941 resultados para yeast extract


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells govern their activities and modulate their interactions with the environment to achieve homeostasis. The heat shock response (HSR) is one of the most well studied fundamental cellular responses to environmental and physiological challenges, resulting in rapid synthesis of heat shock proteins (HSPs), which serve to protect cellular constituents from the deleterious effects of stress. In addition to its role in cytoprotection, the HSR also influences lifespan and is associated with a variety of human diseases including cancer, aging and neurodegenerative disorders. In most eukaryotes, the HSR is primarily mediated by the highly conserved transcription factor HSF1, which recognizes target hsp genes by binding to heat shock elements (HSEs) in their promoters. In recent years, significant efforts have been made to identify small molecules as potential pharmacological activators of HSF1 that could be used for therapeutic benefit in the treatment of human diseases relevant to protein conformation. However, the detailed mechanisms through which these molecules drive HSR activation remain unclear. In this work, I utilized the baker's yeast Saccharomyces cerevisiae as a model system to identify a group of thiol-reactive molecules including oxidants, transition metals and metalloids, and electrophiles, as potent activators of yeast Hsf1. Using an artificial HSE-lacZ reporter and the glucocorticoid receptor system (GR), these diverse thiol-reactive compounds are shown to activate Hsf1 and inhibit Hsp90 chaperone complex activity in a reciprocal, dose-dependent manner. To further understand whether cells sense these reactive compounds through accumulation of unfolded proteins, the proline analog azetidine-2-carboxylic acid (AZC) and protein cross-linker dithiobis(succinimidyl propionate) (DSP) were used to force misfolding of nascent polypeptides and existing cytosolic proteins, respectively. Both unfolding reagents display kinetic HSP induction profiles dissimilar to those generated by thiol-reactive compounds. Moreover, AZC treatment leads to significant cytotoxicity, which is not observed in the presence of the thiol-reactive compounds at the concentrations sufficient to induce Hsf1. Additionally, DSP treatment has little to no effect on Hsp90 functions. Together with the ultracentrifugation analysis of cell lysates that detected no insoluble protein aggregates, my data suggest that at concentrations sufficient to induce Hsf1, thiol-reactive compounds do not induce the HSR via a mechanism based on accumulation of unfolded cytosolic proteins. Another possibility is that thiol-reactive compounds may influence aspects of the protein quality control system such as the ubiquitin-proteasome system (UPS). To address this hypothesis, β-galactosidase reporter fusions were used as model substrates to demonstrate that thiol-reactive compounds do not inhibit ubiquitin activating enzymes (E1) or proteasome activity. Therefore, thiol-reactive compounds do not activate the HSR by inhibiting UPS-dependent protein degradation. I therefore hypothesized that these molecules may directly inactivate protein chaperones, known as repressors of Hsf1. To address this possibility, a thiol-reactive biotin probe was used to demonstrate in vitro that the yeast cytosolic Hsp70 Ssa1, which partners with Hsp90 to repress Hsf1, is specifically modified. Strikingly, mutation of conserved cysteine residues in Ssa1 renders cells insensitive to Hsf1 activation by cadmium and celastrol but not by heat shock. Conversely, substitution with the sulfinic acid and steric bulk mimic aspartic acid led to constitutive activation of Hsf1. Cysteine 303, located in the nucleotide-binding/ATPase domain of Ssa1, was shown to be modified in vivo by a model organic electrophile using Click chemistry technology, verifying that Ssa1 is a direct target for thiol-reactive compounds through adduct formation. Consistently, cadmium pretreatment promoted cells thermotolerance, which is abolished in cells carrying SSA1 cysteine mutant alleles. Taken together, these findings demonstrate that Hsp70 acts as a sensor to induce the cytoprotective heat shock response in response to environmental or endogenously produced thiol-reactive molecules and can discriminate between two distinct environmental stressors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of triple helical, or triplex DNA has been suggested to occur in several cellular processes such as transcription, replication, and recombination. Our laboratory previously found proteins in HeLa nuclear extracts and in S. cerevisiae whole cell extracts that avidly bound a Purine-motif (Pu) triplex probe in gel shift assays, or EMSA. In order to identify a triplex DNA-binding protein, we used conventional and affinity chromatography to purify the major Pu triplex-binding protein in yeast. Peptide microsequencing and data base searches identified this protein as the product of the STM1 gene. Confirmation that Stm1p is a Pu triplex-binding protein was obtained by EMSA using both recombinant Stm1p and whole cell extracts from stm1Δ yeast. Stm1p had previously been identified as G4p2, a G-quartet DNA- and RNA-binding protein. To study the cellular role and identify the nucleic acid ligand of Stm1p in vivo, we introduced an HA epitope at either the N- or C-terminus of Stm1p and performed immunoprecipitations with the HA.11 mAb. Using peptide microsequencing and Northern analysis, we positively identified a subset of both large and small subunit ribosomal proteins and all four rRNAs as associating with Stm1p. DNase I treatment did not affect the association of Stm1p with ribosomal components, but RNase A treatment abolished the association with all ribosomal proteins and RNA, suggesting this association is RNA-dependent. Sucrose gradient fractionation followed by Western and EMSA analysis confirmed that Stm1p associates with intact 80S monosomes, but not polysomes. The presence of additional, unidentified RNA in the Stm1p-immunoprecipitate, and the absence of tRNAs and elongation factors suggests that Stm1p binds RNA and could be involved in the regulation of translation. Immunofluorescence microscopy data showed Stm1p to be located throughout the cytoplasm, with a specific movement to the bud during the G2 phase of the cell cycle. A dramatically flocculent, large cell phenotype is observed when Stm1p has a C-terminal HA tag in a protease-deficient strain background. When STM1 is deleted in this background, the same phenotype is not observed and the deletion yeast grow very slowly compared to the wild-type. These data suggest that STM1 is not essential, but plays a role in cell growth by interacting with an RNP complex that may contain G*G multiplex RNA. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p21-activated kinase, Shk1, is an essential serine/threonine kinase required for normal cell polarity, proper mating response, and hyperosmotic stress response, in the fission yeast, Schizosaccharomyces pombe. This study has established a novel role for Shk1 as a microtubule regulator in fission yeast and, in addition, characterized a potential biological substrate of Shk1. Cells defective in Shk1 function were found to exhibit malformed interphase and mitotic microtubules, are hypersensitive to the microtubule disrupting drug thiabendazole (TBZ), and are cold sensitive for growth. Microtubule disruption by TBZ results in a significant reduction of Shk1 kinase activity, which is restored after cells are released from the drug, thus providing a correlation between Shk1 kinase activity and active microtubule polymerization. Consistent with a role for Shk1 as a microtubule regulator, GFP-Shk1 fusion proteins localize to interphase microtubules and mitotic microtubule spindles. Furthermore, loss of Tea1, a presumptive microtubule regulator in fission yeast, exacerbates the growth and microtubule defects of cells deficient in Shk1 function, and results in illicit Shk1 localization. Moreover, loss of the Cdc2 inhibitory kinase Wee1, which has been implicated as a mediator of the Shk1 pathway, leads to significant microtubule defects. Intriguingly, Wee1 protein levels are markedly reduced both by partial loss of Shk1 function and by treatment with TBZ. These results suggest that Shk1 is required for proper regulation of microtubule dynamics in fission yeast and may interact with Tea1 and Wee1 in this regulatory process. ^ To further understand Shk1 function in fission yeast, a yeast two-hybrid screen for proteins that interact with the Shk1 catalytic domain was performed. This screen led to the identification of a novel protein, Skb10 (for S&barbelow;hk1 k&barbelow;inase b&barbelow;inding protein 10). Coprecipitation experiments demonstrated that Skb10 associates with Shk1 in S. pombe cells. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The essential p21-activated kinase (PAK), Shk1, is a critical component of a Ras/Cdc42/PAK complex required for cell viability, normal cell polarity, proper regulation of cytoskeletal dynamics, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. While cellular functions of PAKs have been described in eukaryotes from yeasts to mammals, the molecular mechanisms of PAK regulation and function are poorly understood. This study has characterized a novel Shk1 inhibitor, Skb15, and, in addition, identified the cell polarity regulator, Tea1, as a potential biological substrate of Shk1 in S. pombe. Skb15 is a highly conserved WD repeat protein that was discovered from a two-hybrid screen for proteins that interact with the catalytic domain of Shk1. Molecular data indicate that Skb15 negatively regulates Shk1 kinase activity in S. pombe cells. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution. ^ Our laboratory has recently demonstrated that Shk1, in addition to regulating actin cytoskeletal organization, is required for proper regulation of microtubule dynamics in S. pombe cells. The Shk1 protein localizes to interphase and mitotic microtubules, the septum-forming region, and cell ends. This pattern of localization overlaps with that of the cell polarity regulator, Tea1, in S. pombe cells. The tea1 gene was identified by Paul Nurse's laboratory from a screen for genes involved in the control of cell morphogenesis in S. pombe. In contrast to wild type S. pombe cells, which are rod shaped, tea1 null cells are often bent and/or branched in shape. The Tea1 protein localizes to the cell ends, like Shk1, and the growing tips of interphase microtubules. Thus, experiments were performed to investigate whether Tea1 interacts with Shk1. The tea1 null mutation strongly suppresses the loss of function of Skb15, an essential inhibitor of Shk1 function. All defects associated with the skb15 mutation, including defects in F-actin organization, septation, spindle elongation, and chromosome segregation, are suppressed by tea1Δ, suggesting that Tea1 may function in these diverse processes. Consistent with a role for Tea1 in cytokinesis, tea1Δ cells have a modest cell separation defect that is greatly exacerbated by a shk1 mutation and, like Shk1, Tea1 localizes to the septation site. Molecular analyses showed that Tea1 phosphorylation is significantly dependent on Shk1 function in vivo and that bacterially expressed Tea1 protein is directly phosphorylated by recombinant Shk1 kinase in vitro. Taken together, these results identify Tea1 as a potential biological substrate of Shk1 in S. pombe. ^ In summary, this study provides new insights into a conserved regulatory mechanism for PAKs, and also begins to uncover the molecular mechanisms by which the Ras/Cdc42/PAK complex regulates the microtubule and actin cytoskeletons and cell growth polarization in fission yeast. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the twenty-second of a series of symposia devoted to talks and posters by students about their biochemical engineering research. The first, third, fifth, ninth, twelfth, sixteenth, and twenti~th were hosted by Kansas State University, the second and fourth by the University of Nebraska- Lincoln, the sixth, seventh, tenth, thirteenth, seventeenth, and twenty-second by Iowa State University, the eighth, fourteenth, and nineteenth by the University of Missouri-Columbia, the eleventh, fifteenth, and twenty-first by Colorado State University, and the eighteenth by the University of Colorado. Next year's symposium will be at the University of Oklahoma. Symposium proceedings are edited and issued by faculty of the host institution. Because final publication usually takes place in refereed journals, articles included here are brief and often cover work in progress. ContentsC. A. Baldwin, J.P. McDonald, and L. E. Erickson, Kansas State University. Effect of Hydrocarbon Phase on Kinetic and Transport Limitations for Bioremediation of Microporous Soil J. C. Wang, S. K. Banerji, and Rakesh Bajpai, University of Missouri-Columbia. Migration of PCP in Soil-Columns in Presence of a Second Organic Phase Cheng-Hsien Hsu and Roger G. Harrison, University of Oklahoma. Bacterial Leaching of Zinc and Copper from Mining Wastes James A. Searles, Paul Todd, and Dhinakar S. Kompala, University of Colorado. Suspension Culture of Chinese Hamster Ovary Cells Utilizing Inclined Sedimentation Ron Beyerinck and Eric H. Dunlop, Colorado State University. The Effect of Feed Zone Turbulence as Measured by Laser Doppler Velocimetry on Baker's Yeast Metabolism in a Chemostat Paul Li-Hong Yeh, GraceY. Sun, Gary A. Weisman, and Rakesh Bajpai, University of Missouri-Columbia. Effect of Medium Constituents upon Membrane Composition of Insect Cells R. Shane Gold, M. M. Meagher, R. Hutkins, and T. Conway, University of Nebraska-Lincoin. Ethanol Tolerance and Carbohydrate Metabolism in Lactobacilli John Sargantanis and M. N. Karim, Colorado State University. Application of Kalman Filter and Adaptive Control in Solid Substrate Fermentation D. Vrana, M. Meagher, and R. Hutkins, University of Nebraska-Lincoln. Product Recovery Optimization in the ABE Fermentation Kalyan R. Tadikonda and Robert H. Davis, University of Colorado. Cell Separations Using Targeted Monoclonal Antibodies Against Surface Proteins Meng H. Heng and Charles E. Glatz, Iowa State University. Charged Fusion for Selective Recovery of B-Galactosidase from Cell Extract Using Hollow Fiber Ion-Exchange Membrane Adsorption Hsiu-Mei Chen, Peter J. Reilly, and Clark Ford, Iowa State University. Site-Directed Mutagenesis to Enhance Thermostability of Glucoamylase from Aspergillus: A Rational Approach P. Tuitemwong, L. E. Erickson, and D. Y. C. Fung, Kansas State University. Applications of Enzymatic Hydrolysis and Fermentation on the Reduction of Flatulent Sugars in the Rapid Hydration Hydrothermal Cooked Soy Milk Sanjeev Redkar and Robert H. Davis, University of Colorado. Crossflow Microfiltration of Yeast Suspensions Linda Henk and James C. Linden, Colorado State University, and Irving C. Anderson, Iowa State University. Evaluation of Sorghum Ensilage as an Ethanol Feedstock Marc Lipovitch and James C. Linden, Colorado State University. Stability and Biomass Feedstock Pretreatability for Simultaneous Saccharification and Fermentation Ali Demirci, Anthony L. Pometto Ill, and Kenneth E. Johnson, Iowa State University. Application of Biofilm Reactors in Lactic Acid Fermentation Michael K. Dowd, Peter I. Reilly, and WalterS. Trahanovsky, Iowa State University. Low Molecular-Weight Organic Composition of Ethanol Stillage from Corn Craig E. Forney, Meng H. Heng, John R. Luther, Mark Q. Niederauer, and Charles E. Glatz, Iowa State University. Enhancement of Protein Separation Using Genetic Engineering J. F. Shimp, J. C. Tracy, E. Lee, L. C. Davis, and L. E. Erickson, Kansas State University. Modeling Contaminant Transport, Biodegradation and Uptake by Plants in the Rhizosphere Xiaoqing Yang, L. E. Erickson, and L. T. Fan, Kansas State University. Modeling of Dispersive-Convective Characteristics in Bioremediation of Contaminated Soil Jan Johansson and Rakesh Bajpai, University of Missouri-Columbia. Fouling of Membranes J. M. Wang, S. K. Banerji, and R. K. Bajpai, University of Missouri-Columbia. Migration of Sodium-Pentachorophenol (Na-PCP) in Unsaturated and Saturated Soil-Columns J. Sweeney and M. Meagher, University of Nebraska-Lincoln. The Purification of Alpha-D-Glucuronidase from Trichoderma reesei

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantity, type, and maturity of the organic matter of middle Miocene to Quaternary sediments from the eastern North Pacific (Deep Sea Drilling Project Leg 63) were determined. Hydrocarbons and fatty acids in lipid extracts were analyzed by capillary column gas chromatography and combined gas chromatography/mass spectrometry. Kerogens were investigated by Rock-Eval pyrolysis and microscopy, and vitrinite reflectance values were determined. At Site 467, in the San Miguel Gap of the outer California Continental Borderland, organic carbon contents range from 1.46% to 5.40%. Normalized to organic carbon, total extracts increase from about 10 to 36 mg/g Corg with depth. The organic matter is a mixture of both marine and terrestrial origin, with the marine organic matter representing a high proportion in some of the samples. Steroid hydrocarbons - sterenes and steradienes in the upper part of the section and steranes in the deepest sample - are the most abundant compounds in the nonaromatic hydrocarbon fractions. Perylene, alkylated thiophenes, and aromatic steroid hydrocarbons dominate in the aromatic hydrocarbon fractions of the shallower samples; increasing maturation is indicated by a more petroleumlike aromatic hydrocarbon distribution. Microscopy revealed a high amount of liptinitic organic matter and confirmed the maturation trend as observed from analysis of the extracts. The vitrinite reflectance may be extrapolated to a bottom-hole value of nearly 0.5% Ro. The liquid hydrocarbon potential of the sediments at higher maturity levels is rated to be good to excellent. At Site 471, off Baja California, organic carbon values are between 0.70% and 1.12%. Extract values increase with depth, as at Site 467. The investigation of the soluble and insoluble organic matter, despite some compositional similarities, consistently revealed a more terrigenous influx compared with Site 467. Thus the potential for liquid hydrocarbon generation is lower, the organic matter being more gas-prone. The deepest sample analyzed indicates the onset of hydrocarbon generation. At this site, frequent sand intercalations offer pathways for migration and possibly reservoir formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seventeen sediment samples of Albian-Cenomanian to early Pliocene age from DSDP Hole 530A in the Angola Basin and six sediment samples of early Pliocene to late Pleistocene age from the Walvis Ridge were investigated by organic geochemical methods, including organic carbon determination, Rock-Eval pyrolysis, gas chromatography and combined gas chromatography/mass spectrometry of extractable hydrocarbons, and kerogen microscopy. The organic matter in all samples is strongly influenced by a terrigenous component from the nearby continent. The amount of marine organic matter present usually increases with the total organic carbon content, which reaches an extreme value of more than 10% in a Cenomanian black shale from Hole 530A. At Site 530 the extent of preservation of organic matter in the deep sea sediments is related to mass transport down the continental slope, whereas the high organic carbon contents in the sediments from Site 532 reflect both high bioproductivity in the Benguela upwelling regime and considerable supply of terrigenous organic matter. The maturation level of the organic matter is low in all samples.