977 resultados para water resources planning
Resumo:
Summary of stream water quality data collected from 2000 through 2015
Resumo:
Summary of stream water quality data collected in 2015.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
An overview on how to maintain an efficient food production system while protecting Iowa's natural resources.
Resumo:
Planners require solutions that address routine work needs and seems essential to improving efficiency and productivity. There are a great number of different factors related to beekeeper activity as well the quality and productivity of different bee products. The spatial analysis is a powerful tool for overlap and relates various levels of information on a map, and consequently a very useful for beekeeping activity planning. This work proposes and applies a methodology to potential beekeeping assessment in Montesinho Natural Park, a region in the northwest of Portugal. The beekeeping potential maps were developed with the following data sources: legal standards, vegetation, land use, topography, water resources, roads, electromagnetic fields, and some honey physico-chemical analysis. The design and implementation of spatial analysis model based on Geographic Information System (GIS) to beekeeping planning activities has already been described by Anjos et al (2014). Spatial analysis techniques allows to define the potential beekeeper map supporting the beekeeper management in this region. Anjos O, Silva G, Roque N, Fernandez P, 2014. GIS based analysis to support the beekeeping planning. Book of abstracts of the International Symposium on Bee Products 3rd edition – Annual meeting of the International Honey Commission (IHC), Faculty of medicine, University of Rijeka, p:61
Resumo:
Using water quality management programs is a necessary and inevitable way for preservation and sustainable use of water resources. One of the important issues in determining the quality of water in rivers is designing effective quality control networks, so that the measured quality variables in these stations are, as far as possible, indicative of overall changes in water quality. One of the methods to achieve this goal is increasing the number of quality monitoring stations and sampling instances. Since this will dramatically increase the annual cost of monitoring, deciding on which stations and parameters are the most important ones, along with increasing the instances of sampling, in a way that shows maximum change in the system under study can affect the future decision-making processes for optimizing the efficacy of extant monitoring network, removing or adding new stations or parameters and decreasing or increasing sampling instances. This end, the efficiency of multivariate statistical procedures was studied in this thesis. Multivariate statistical procedure, with regard to its features, can be used as a practical and useful method in recognizing and analyzing rivers’ pollution and consequently in understanding, reasoning, controlling, and correct decision-making in water quality management. This research was carried out using multivariate statistical techniques for analyzing the quality of water and monitoring the variables affecting its quality in Gharasou river, in Ardabil province in northwest of Iran. During a year, 28 physical and chemical parameters were sampled in 11 stations. The results of these measurements were analyzed by multivariate procedures such as: Cluster Analysis (CA), Principal Component Analysis (PCA), Factor Analysis (FA), and Discriminant Analysis (DA). Based on the findings from cluster analysis, principal component analysis, and factor analysis the stations were divided into three groups of highly polluted (HP), moderately polluted (MP), and less polluted (LP) stations Thus, this study illustrates the usefulness of multivariate statistical techniques for analysis and interpretation of complex data sets, and in water quality assessment, identification of pollution sources/factors and understanding spatial variations in water quality for effective river water quality management. This study also shows the effectiveness of these techniques for getting better information about the water quality and design of monitoring network for effective management of water resources. Therefore, based on the results, Gharasou river water quality monitoring program was developed and presented.
Resumo:
Proceedings of the 8th International Symposium on Project Approaches in Engineering Education (PAEE), Guimarães, 2016
Resumo:
Mode of access: Internet.
Resumo:
To conserve and protect the State's water resources the State of Maryland controls the appropriation or use of its surface waters and groundwater. State law requires all agricultural operations to comply with the water appropriation permitting process, including traditional forms of agriculture, livestock and poultry operations, nursery operations and aquaculture.
Resumo:
The service of a critical infrastructure, such as a municipal wastewater treatment plant (MWWTP), is taken for granted until a flood or another low frequency, high consequence crisis brings its fragility to attention. The unique aspects of the MWWTP call for a method to quantify the flood stage-duration-frequency relationship. By developing a bivariate joint distribution model of flood stage and duration, this study adds a second dimension, time, into flood risk studies. A new parameter, inter-event time, is developed to further illustrate the effect of event separation on the frequency assessment. The method is tested on riverine, estuary and tidal sites in the Mid-Atlantic region. Equipment damage functions are characterized by linear and step damage models. The Expected Annual Damage (EAD) of the underground equipment is further estimated by the parametric joint distribution model, which is a function of both flood stage and duration, demonstrating the application of the bivariate model in risk assessment. Flood likelihood may alter due to climate change. A sensitivity analysis method is developed to assess future flood risk by estimating flood frequency under conditions of higher sea level and stream flow response to increased precipitation intensity. Scenarios based on steady and unsteady flow analysis are generated for current climate, future climate within this century, and future climate beyond this century, consistent with the WWTP planning horizons. The spatial extent of flood risk is visualized by inundation mapping and GIS-Assisted Risk Register (GARR). This research will help the stakeholders of the critical infrastructure be aware of the flood risk, vulnerability, and the inherent uncertainty.
Resumo:
2009
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
The Iowa Department of Natural Resources (DNR) Ambient Water Monitoring Program provides consistent, unbiased information about the condition of Iowa’s water resources to support decisions affecting the development, management and protection of these resources. To strengthen its services, the program worked with a variety of stakeholders and other DNR programs to develop a five-year strategy for Iowa’s ambient water monitoring efforts. The strategy identifies opportunities to improve the program’s effectiveness in several categories: monitoring objectives, sampling design, data management, products and services, and program evaluation and coordination. Iowa DNR managers and technical staff will use the new strategy to guide decisions affecting the ambient monitoring program over the next five years. The strategy should also serve as a robust informational resource for stakeholders, policy makers, legislators and the public.
Resumo:
Monitoring of nitrogen and phosphorus in streams and rivers throughout Iowa is an essential element of the Iowa Nutrient Reduction Strategy (INRS). Sampling and analysis of surface water is necessary to develop periodic estimates of the amounts of nitrogen and phosphorus transported from Iowa. Surface and groundwater monitoring provides the scientific evidence needed to document the effectiveness of nutrient reduction practices and the impact they have on water quality. Lastly, monitoring data informs decisions about where and how best to implement nutrient reduction practices, by both point sources and nonpoint sources, to provide the greatest benefit at the least cost. The impetus for this report comes from the Water Resources Coordination Council (WRCC) which states in its 2014‐15 Annual Report “Efforts are underway to improve understanding of the multiple nutrient monitoring efforts that may be available and can be compared to the nutrient WQ monitoring framework to identify opportunities and potential data gaps to better coordinate and prioritize future nutrient monitoring efforts.” This report is the culmination of those efforts.
Resumo:
In May 2014, the Iowa Department of Agriculture and Land Stewardship, Iowa State University College of Agriculture and Life Sciences, and the Iowa Department of Natural Resources met to identify needed updates to the Iowa Nutrient Reduction Strategy. Updates were necessary to keep the text of the strategy up¬‐to¬‐date based on current information and status of efforts related to the strategy. Proposed updates were presented to the Water Resources Coordinating Council (WRCC) at its July 29 meeting, along with the annual strategy progress report. Comments were requested from both the WRCC and the Watershed Planning Advisory Council. Based on those comments, the draft report was updated and presented to the WRCC again on September 18, and finalized following that meeting. Below is a summary of the updates that have been made to the May 29, 2013 strategy document.