934 resultados para vortex-antivortex pair
Resumo:
Epidemiological data link adolescent cannabis use to psychosis and schizophrenia, but its contribution to schizophrenia neuropathology remains controversial. First-episode schizophrenia (FES) patients show regional cerebral grey- and white-matter changes as well as a distinct pattern of regional grey-matter loss in the vermis of the cerebellum. The cerebellum possesses a high density of cannabinoid type 1 receptors involved in the neuronal diversification of the developing brain. Cannabis abuse may interfere with this process during adolescent brain maturation leading to ‘schizophrenia-like’ cerebellar pathology. Magnetic resonance imaging and cortical pattern matching techniques were used to investigate cerebellar grey and white matter in FES patients with and without a history of cannabis use and non-psychiatric cannabis users. In the latter group we found lifetime dose-dependent regional reduction of grey matter in the right cerebellar lobules and a tendency for more profound grey-matter reduction in lobule III with younger age at onset of cannabis use. The overall regional grey-matter differences in cannabis users were within the normal variability of grey-matter distribution. By contrast, FES subjects had lower total cerebellar grey-matter : total cerebellar volume ratio and marked grey-matter loss in the vermis, pedunculi, flocculi and lobules compared to pair-wise matched healthy control subjects. This pattern and degree of grey-matter loss did not differ from age-matched FES subjects with comorbid cannabis use. Our findings indicate small dose-dependent effects of juvenile cannabis use on cerebellar neuropathology but no evidence of an additional effect of cannabis use on FES cerebellar grey-matter pathology.
Resumo:
Determination of sequence similarity is a central issue in computational biology, a problem addressed primarily through BLAST, an alignment based heuristic which has underpinned much of the analysis and annotation of the genomic era. Despite their success, alignment-based approaches scale poorly with increasing data set size, and are not robust under structural sequence rearrangements. Successive waves of innovation in sequencing technologies – so-called Next Generation Sequencing (NGS) approaches – have led to an explosion in data availability, challenging existing methods and motivating novel approaches to sequence representation and similarity scoring, including adaptation of existing methods from other domains such as information retrieval. In this work, we investigate locality-sensitive hashing of sequences through binary document signatures, applying the method to a bacterial protein classification task. Here, the goal is to predict the gene family to which a given query protein belongs. Experiments carried out on a pair of small but biologically realistic datasets (the full protein repertoires of families of Chlamydia and Staphylococcus aureus genomes respectively) show that a measure of similarity obtained by locality sensitive hashing gives highly accurate results while offering a number of avenues which will lead to substantial performance improvements over BLAST..
Resumo:
This paper presents a low-bandwidth multi-robot communication system designed to serve as a backup communication channel in the event a robot suffers a network device fault. While much research has been performed in the area of distributing network communication across multiple robots within a system, individual robots are still susceptible to hardware failure. In the past, such robots would simply be removed from service, and their tasks re-allocated to other members. However, there are times when a faulty robot might be crucial to a mission, or be able to contribute in a less communication intensive area. By allowing robots to encode and decode messages into unique sequences of DTMF symbols, called words, our system is able to facilitate continued low-bandwidth communication between robots without access to network communication. Our results have shown that the system is capable of permitting robots to negotiate task initiation and termination, and is flexible enough to permit a pair of robots to perform a simple turn taking task.
Resumo:
Cerebellar dysfunction has been proposed to lead to “cognitive dysmetria” in schizophrenia via the cortico-cerebellar-thalamic-cortical circuit, contributing to a range of cognitive and clinical symptoms of the disorder. Here we investigated total cerebellar grey and white matter volumes and cerebellar regional grey matter abnormalities in 13 remitted first-episode schizophrenia patients with less than 2 years’ duration of illness. Patient data were compared to 13 pair-wise age, gender, and handedness-matched healthy volunteers using cortical pattern averaging on high-resolution magnetic resonance images. Total cerebellar volume and total grey matter volumes in first-episode schizophrenia patients did not differ from healthy control subjects, but total cerebellar white matter was increased and total grey to white matter ratios were reduced in patients. Four clusters of cerebellar grey matter reduction were identified: (i) in superior vermis; (ii) in the left lobuli VI; (iii) in right-inferior lobule IX, extending into left lobule IX; and (iv) bilaterally in the areas of lobuli III, peduncle and left flocculus. Grey matter deficits were particularly prominent in right lobuli III and IX, left flocculus and bilateral pedunculi. These cerebellar areas have been implicated in attention control, emotional regulation, social functioning, initiation of smooth pursuit eye movements, eye-blink conditioning, language processing, verbal memory, executive function and the processing of spatial and emotional information. Consistent with common clinical, cognitive, and pathophysiological signs of established illness, our findings demonstrate cerebellar pathology as early as in first-episode schizophrenia.