973 resultados para visual odometry algorithms
Resumo:
Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.
Resumo:
First responders are in danger when they perform tasks in damaged buildings after earthquakes. Structural collapse due to the failure of critical load bearing structural members (e.g. columns) during a post-earthquake event such as an aftershock can make first responders victims, considering they are unable to assess the impact of the damage inflicted in load bearing members. The writers here propose a method that can provide first responders with a crude but quick estimate of the damage inflicted in load bearing members. Under the proposed method, critical structural members (reinforced concrete columns in this study) are identified from digital visual data and the damage superimposed on these structural members is detected with the help of Visual Pattern Recognition techniques. The correlation of the two (e.g. the position, orientation and size of a crack on the surface of a column) is used to query a case-based reasoning knowledge base, which contains apriori classified states of columns according to the damage inflicted on them. When query results indicate the column's damage state is severe, the method assumes that a structural collapse is likely and first responders are warned to evacuate.
Resumo:
After earthquakes, licensed inspectors use the established codes to assess the impact of damage on structural elements. It always takes them days to weeks. However, emergency responders (e.g. firefighters) must act within hours of a disaster event to enter damaged structures to save lives, and therefore cannot wait till an official assessment completes. This is a risk that firefighters have to take. Although Search and Rescue Organizations offer training seminars to familiarize firefighters with structural damage assessment, its effectiveness is hard to guarantee when firefighters perform life rescue and damage assessment operations together. Also, the training is not available to every firefighter. The authors therefore proposed a novel framework that can provide firefighters with a quick but crude assessment of damaged buildings through evaluating the visible damage on their critical structural elements (i.e. concrete columns in the study). This paper presents the first step of the framework. It aims to automate the detection of concrete columns from visual data. To achieve this, the typical shape of columns (long vertical lines) is recognized using edge detection and the Hough transform. The bounding rectangle for each pair of long vertical lines is then formed. When the resulting rectangle resembles a column and the material contained in the region of two long vertical lines is recognized as concrete, the region is marked as a concrete column surface. Real video/image data are used to test the method. The preliminary results indicate that concrete columns can be detected when they are not distant and have at least one surface visible.
Resumo:
As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.
Resumo:
Visual recognition problems often involve classification of myriads of pixels, across scales, to locate objects of interest in an image or to segment images according to object classes. The requirement for high speed and accuracy makes the problems very challenging and has motivated studies on efficient classification algorithms. A novel multi-classifier boosting algorithm is proposed to tackle the multimodal problems by simultaneously clustering samples and boosting classifiers in Section 2. The method is extended into an online version for object tracking in Section 3. Section 4 presents a tree-structured classifier, called Super tree, to further speed up the classification time of a standard boosting classifier. The proposed methods are demonstrated for object detection, tracking and segmentation tasks. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
While a large amount of research over the past two decades has focused on discrete abstractions of infinite-state dynamical systems, many structural and algorithmic details of these abstractions remain unknown. To clarify the computational resources needed to perform discrete abstractions, this paper examines the algorithmic properties of an existing method for deriving finite-state systems that are bisimilar to linear discrete-time control systems. We explicitly find the structure of the finite-state system, show that it can be enormous compared to the original linear system, and give conditions to guarantee that the finite-state system is reasonably sized and efficiently computable. Though constructing the finite-state system is generally impractical, we see that special cases could be amenable to satisfiability based verification techniques. ©2009 IEEE.