945 resultados para vehicle trajectory data
Resumo:
We have previously reported that novel vitronectin:growth factor (VN:GF) complexes significantly increase re-epithelialization in a porcine deep dermal partial-thickness burn model. However, the potential exists to further enhance the healing response through combination with an appropriate delivery vehicle which facilitates sustained local release and reduced doses of VN:GF complexes. Hyaluronic acid (HA), an abundant constituent of the interstitium, is known to function as a reservoir for growth factors and other bioactive species. The physicochemical properties of HA confer it with an ability to sustain elevated pericellular concentrations of these species. This has been proposed to arise via HA prolonging interactions of the bioactive species with cell surface receptors and/or protecting them from degradation. In view of this, the potential of HA to facilitate the topical delivery of VN:GF complexes was evaluated. Two-dimensional (2D) monolayer cell cultures and 3D de-epidermised dermis (DED) human skin equivalent (HSE) models were used to test skin cell responses to HA and VN:GF complexes. Our 2D studies revealed that VN:GF complexes and HA stimulate the proliferation of human fibroblasts but not keratinocytes. Experiments in our 3D DED-HSE models showed that VN:GF complexes, both alone and in conjunction with HA, led to enhanced development of both the proliferative and differentiating layers in the DED-HSE models. However, there was no significant difference between the thicknesses of the epidermis treated with VN:GF complexes alone and VN:GF complexes together with HA. While the addition of HA did not enhance all the cellular responses to VN:GF complexes examined, it was not inhibitory, and may confer other advantages related to enhanced absorption and transport that could be beneficial in delivery of the VN:GF complexes to wounds.
Resumo:
In response to the need to leverage private finance and the lack of competition in some parts of the Australian public sector major infrastructure market, especially in very large economic infrastructure procured using Pubic Private Partnerships, the Australian Federal government has demonstrated its desire to attract new sources of in-bound foreign direct investment (FDI) into the Australian construction market. This paper aims to report on progress towards an investigation into the determinants of multinational contractors’ willingness to bid for Australian public sector major infrastructure projects and which is designed to give an improved understanding of matters surrounding FDI into the Australian construction sector. This research deploys Dunning’s eclectic theory for the first time in terms of in-bound FDI by multinational contractors and as head contractors bidding for Australian major infrastructure public sector projects. Elsewhere, the authors have developed Dunning’s principal hypothesis associated with his eclectic framework in order to suit the context of this research and to address a weakness arising in Dunning’s principal hypothesis that is based on a nominal approach to the factors in the eclectic framework and which fail to speak to the relative explanatory power of these factors. In this paper, an approach to reviewing and analysing secondary data, as part of the first stage investigation in this research, is developed and some illustrations given, vis-à-vis the selected sector (roads, bridges and tunnels) in Australia (as the host location) and using one of the selected home countries (Spain). In conclusion, some tentative thoughts are offered in anticipation of the completion of the first stage investigation - in terms of the extent to which this first stage based on secondary data only might suggest the relative importance of the factors in the eclectic framework. It is noted that more robust conclusions are expected following the future planned stages of the research and these stages including primary data are briefly outlined. Finally, and beyond theoretical contributions expected from the overall approach taken to developing and testing Dunning’s framework, other expected contributions concerning research method and practical implications are mentioned.
Resumo:
Researchers are increasingly involved in data-intensive research projects that cut across geographic and disciplinary borders. Quality research now often involves virtual communities of researchers participating in large-scale web-based collaborations, opening their earlystage research to the research community in order to encourage broader participation and accelerate discoveries. The result of such large-scale collaborations has been the production of ever-increasing amounts of data. In short, we are in the midst of a data deluge. Accompanying these developments has been a growing recognition that if the benefits of enhanced access to research are to be realised, it will be necessary to develop the systems and services that enable data to be managed and secured. It has also become apparent that to achieve seamless access to data it is necessary not only to adopt appropriate technical standards, practices and architecture, but also to develop legal frameworks that facilitate access to and use of research data. This chapter provides an overview of the current research landscape in Australia as it relates to the collection, management and sharing of research data. The chapter then explains the Australian legal regimes relevant to data, including copyright, patent, privacy, confidentiality and contract law. Finally, this chapter proposes the infrastructure elements that are required for the proper management of legal interests, ownership rights and rights to access and use data collected or generated by research projects.
Resumo:
This report provides an evaluation of the current available evidence-base for identification and surveillance of product-related injuries in children in Queensland. While the focal population was children in Queensland, the identification of information needs and data sources for product safety surveillance has applicability nationally for all age groups. The report firstly summarises the data needs of product safety regulators regarding product-related injury in children, describing the current sources of information informing product safety policy and practice, and documenting the priority product surveillance areas affecting children which have been a focus over recent years in Queensland. Health data sources in Queensland which have the potential to inform product safety surveillance initiatives were evaluated in terms of their ability to address the information needs of product safety regulators. Patterns in product-related injuries in children were analysed using routinely available health data to identify areas for future intervention, and the patterns in product-related injuries in children identified in health data were compared to those identified by product safety regulators. Recommendations were made for information system improvements and improved access to and utilisation of health data for more proactive approaches to product safety surveillance in the future.
Resumo:
Assurance of learning is a predominant feature in both quality enhancement and assurance in higher education. Assurance of learning is a process that articulates explicit program outcomes and standards, and systematically gathers evidence to determine the extent to which performance matches expectations. Benefits accrue to the institution through the systematic assessment of whole of program goals. Data may be used for continuous improvement, program development, and to inform external accreditation and evaluation bodies. Recent developments, including the introduction of the Tertiary Education and Quality Standards Agency (TEQSA) will require universities to review the methods they use to assure learning outcomes. This project investigates two critical elements of assurance of learning: 1. the mapping of graduate attributes throughout a program; and 2. the collection of assurance of learning data. An audit was conducted with 25 of the 39 Business Schools in Australian universities to identify current methods of mapping graduate attributes and for collecting assurance of learning data across degree programs, as well as a review of the key challenges faced in these areas. Our findings indicate that external drivers like professional body accreditation (for example: Association to Advance Collegiate Schools of Business (AACSB)) and TEQSA are important motivators for assuring learning, and those who were undertaking AACSB accreditation had more robust assurance of learning systems in place. It was reassuring to see that the majority of institutions (96%) had adopted an embedding approach to assuring learning rather than opting for independent standardised testing. The main challenges that were evident were the development of sustainable processes that were not considered a burden to academic staff, and obtainment of academic buy in to the benefits of assuring learning per se rather than assurance of learning being seen as a tick box exercise. This cultural change is the real challenge in assurance of learning practice.
Resumo:
This paper presents the hardware development and testing of a new concept for air sampling via the integration of a prototype spore trap onboard an unmanned aerial system (UAS).We propose the integration of a prototype spore trap onboard a UAS to allow multiple capture of spores of pathogens in single remote locations at high or low altitude, otherwise not possible with stationary sampling devices.We also demonstrate the capability of this system for the capture of multiple time-stamped samples during a single mission.Wind tunnel testing was followed by simulation, and flight testing was conducted to measure and quantify the spread during simulated airborne air sampling operations. During autonomous operations, the onboard autopilot commands the servo to rotate the sampling device to a new indexed location once the UAS vehicle reaches the predefined waypoint or set of waypoints (which represents the region of interest). Time-stamped UAS data are continuously logged during the flight to assist with analysis of the particles collected. Testing and validation of the autopilot and spore trap integration, functionality, and performance is described. These tools may enhance the ability to detect new incursions of spores
Resumo:
Errata supplement to QUT thesis: 'Heavy vehicle suspensions : testing and analysis'
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
Computer vision is an attractive solution for uninhabited aerial vehicle (UAV) collision avoidance, due to the low weight, size and power requirements of hardware. A two-stage paradigm has emerged in the literature for detection and tracking of dim targets in images, comprising of spatial preprocessing, followed by temporal filtering. In this paper, we investigate a hidden Markov model (HMM) based temporal filtering approach. Specifically, we propose an adaptive HMM filter, in which the variance of model parameters is refined as the quality of the target estimate improves. Filters with high variance (fat filters) are used for target acquisition, and filters with low variance (thin filters) are used for target tracking. The adaptive filter is tested in simulation and with real data (video of a collision-course aircraft). Our test results demonstrate that our adaptive filtering approach has improved tracking performance, and provides an estimate of target heading not present in previous HMM filtering approaches.
Resumo:
Although, transportation disadvantage or imbalance between travel needs and supply of transportation system is a great harm to knowledge based environments, quantification and objectively measuring the state of transportation disadvantaged remain to be a great challenge for researcher due to its ambiguity. This poses questions of whether the current indicators are accurately linked with transportation disadvantages and the effectiveness of the current policies. Using current indicators of transportation disadvantages, the state of transportation disadvantage is often exaggerated due to limited afford has been put forward to provide clear assessment on the existed relationship between transportation disadvantage indicators with travel performance or capability. This paper proposes a structural equation model of transportation disadvantage using household variables gained from the 2006-2008 South-East Queensland Travel Survey (SEQTS). The underlying relationships between social economics and demographic characteristics of household with travel performance are modelled using a latent variable approach. The final model has been able to fit the data gathered from SEQTS and explained established links between key household factors with travel capability and determined key indicator of travel capability. The model recognises that travel capability is directly influenced by household factors; vehicle ratio, license possession, retirees and pensioners.
Resumo:
This paper argues for a renewed focus on statistical reasoning in the beginning school years, with opportunities for children to engage in data modelling. Some of the core components of data modelling are addressed. A selection of results from the first data modelling activity implemented during the second year (2010; second grade) of a current longitudinal study are reported. Data modelling involves investigations of meaningful phenomena, deciding what is worthy of attention (identifying complex attributes), and then progressing to organising, structuring, visualising, and representing data. Reported here are children's abilities to identify diverse and complex attributes, sort and classify data in different ways, and create and interpret models to represent their data.
Resumo:
This paper describes modelling, estimation and control of the horizontal translational motion of an open-source and cost effective quadcopter — the MikroKopter. We determine the dynamics of its roll and pitch attitude controller, system latencies, and the units associated with the values exchanged with the vehicle over its serial port. Using this we create a horizontal-plane velocity estimator that uses data from the built-in inertial sensors and an onboard laser scanner, and implement translational control using a nested control loop architecture. We present experimental results for the model and estimator, as well as closed-loop positioning.
Resumo:
The World Health Organisation has highlighted the urgent need to address the escalating global public health crisis associated with road trauma. Low-income and middle-income countries bear the brunt of this, and rapid increases in private vehicle ownership in these nations present new challenges to authorities, citizens, and researchers alike. The role of human factors in the road safety equation is high. In China, human factors have been implicated in more than 90% of road crashes, with speeding identified as the primary cause (Wang, 2003). However, research investigating the factors that influence driving speeds in China is lacking (WHO, 2004). To help address this gap, we present qualitative findings from group interviews conducted with 35 Beijing car drivers in 2008. Some themes arising from data analysis showed strong similarities with findings from highly-motorised nations (e.g., UK, USA, and Australia) and include issues such as driver definitions of ‘speeding’ that appear to be aligned with legislative enforcement tolerances, factors relating to ease/difficulty of speed limit compliance, and the modifying influence of speed cameras. However, unique differences were evident, some of which, to our knowledge, are previously unreported in research literature. Themes included issues relating to an expressed lack of understanding about why speed limits are necessary and a perceived lack of transparency in traffic law enforcement and use of associated revenue. The perception of an unfair system seemed related to issues such as differential treatment of certain drivers and the large amount of individual discretion available to traffic police when administering sanctions. Additionally, a wide range of strategies to overtly avoid detection for speeding and/or the associated sanctions were reported. These strategies included the use of in-vehicle speed camera detectors, covering or removing vehicle licence number plates, and using personal networks of influential people to reduce or cancel a sanction. These findings have implications for traffic law, law enforcement, driver training, and public education in China. While not representative of all Beijing drivers, we believe that these research findings offer unique insights into driver behaviour in China.
Resumo:
In this paper we consider the implementation of time and energy efficient trajectories onto a test-bed autonomous underwater vehicle. The trajectories are losely connected to the results of the application of the maximum principle to the controlled mechanical system. We use a numerical algorithm to compute efficient trajectories designed using geometric control theory to optimize a given cost function. Experimental results are shown for the time minimization problem.
Resumo:
Dhaka’s traffic is heterogeneous, both motorized (MT) and non-motorized (NMT) transport are common. Traffic congestion has become a part of city dwellers’ lives. This paper explores the factors for motor vehicle growth in Dhaka. The scope of the paper will be limited to literature review...