934 resultados para upscale extensions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BAliBASE is specifically designed to serve as an evaluation resource to address all the problems encountered when aligning complete sequences. The database contains high quality, manually constructed multiple sequence alignments together with detailed annotations. The alignments are all based on three-dimensional structural superpositions, with the exception of the transmembrane sequences. The first release provided sets of reference alignments dealing with the problems of high variability, unequal repartition and large N/C-terminal extensions and internal insertions. Here we describe version 2.0 of the database, which incorporates three new reference sets of alignments containing structural repeats, trans­membrane sequences and circular permutations to evaluate the accuracy of detection/prediction and alignment of these complex sequences. BAliBASE can be viewed at the web site http://www-igbmc.u-strasbg.fr/BioInfo/BAliBASE2/index.html or can be downloaded from ftp://ftp-igbmc.u-strasbg.fr/pub/BAliBASE2/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The K homology (KH) module is a widespread RNA-binding motif that has been detected by sequence similarity searches in such proteins as heterogeneous nuclear ribonucleoprotein K (hnRNP K) and ribosomal protein S3. Analysis of spatial structures of KH domains in hnRNP K and S3 reveals that they are topologically dissimilar and thus belong to different protein folds. Thus KH motif proteins provide a rare example of protein domains that share significant sequence similarity in the motif regions but possess globally distinct structures. The two distinct topologies might have arisen from an ancestral KH motif protein by N- and C-terminal extensions, or one of the existing topologies may have evolved from the other by extension, displacement and deletion. C-terminal extension (deletion) requires β-sheet rearrangement through the insertion (removal) of a β-strand in a manner similar to that observed in serine protease inhibitors serpins. Current analysis offers a new look on how proteins can change fold in the course of evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Syntenin is a PDZ protein that binds the cytoplasmic C-terminal FYA motif of the syndecans. Syntenin is widely expressed. In cell fractionation experiments, syntenin partitions between the cytosol and microsomes. Immunofluorescence microscopy localizes endogenous and epitope-tagged syntenin to cell adhesion sites, microfilaments, and the nucleus. Syntenin is composed of at least three domains. Both PDZ domains of syntenin are necessary to target reporter tags to the plasma membrane. The addition of a segment of 10 amino acids from the N-terminal domain of syntenin to these PDZ domains increases the localization of the tags to stress fibers and induces the formation of long, branching plasma membrane extensions. The addition of the complete N-terminal region, in contrast, reduces the localization of the tags to plasma membrane/adhesion sites and stress fibers, and reduces the morphotypical effects. Recombinant domains of syntenin with the highest plasma membrane localization display the lowest nuclear localization. Syndecan-1, E-cadherin, β-catenin, and α-catenin colocalize with syntenin at cell-cell contacts in epithelial cells, and coimmunoprecipitate with syntenin from extracts of these cells. These results suggest a role for syntenin in the composition of adherens junctions and the regulation of plasma membrane dynamics, and imply a potential role for syntenin in nuclear processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The release of vast quantities of DNA sequence data by large-scale genome and expressed sequence tag (EST) projects underlines the necessity for the development of efficient and inexpensive ways to link sequence databases with temporal and spatial expression profiles. Here we demonstrate the power of linking cDNA sequence data (including EST sequences) with transcript profiles revealed by cDNA-AFLP, a highly reproducible differential display method based on restriction enzyme digests and selective amplification under high stringency conditions. We have developed a computer program (GenEST) that predicts the sizes of virtual transcript-derived fragments (TDFs) of in silico-digested cDNA sequences retrieved from databases. The vast majority of the resulting virtual TDFs could be traced back among the thousands of TDFs displayed on cDNA-AFLP gels. Sequencing of the corresponding bands excised from cDNA-AFLP gels revealed no inconsistencies. As a consequence, cDNA sequence databases can be screened very efficiently to identify genes with relevant expression profiles. The other way round, it is possible to switch from cDNA-AFLP gels to sequences in the databases. Using the restriction enzyme recognition sites, the primer extensions and the estimated TDF size as identifiers, the DNA sequence(s) corresponding to a TDF with an interesting expression pattern can be identified. In this paper we show examples in both directions by analyzing the plant parasitic nematode Globodera rostochiensis. Various novel pathogenicity factors were identified by combining ESTs from the infective stage juveniles with expression profiles of ∼4000 genes in five developmental stages produced by cDNA-AFLP.