959 resultados para three-phase harmonic analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’elaborato si occupa di fare il punto in materia di indagini difensive a tre lustri dall’entrata in vigore della legge n. 397/2000, epilogo di un lungo processo evolutivo che ha visto da un lato, una gestazione faticosa e travagliata, dall’altro, un prodotto normativo accolto dagli operatori in un contesto di scetticismo generale. In un panorama normativo e giurisprudenziale in continua evoluzione, i paradigmi dettati dagli artt. 24 e 111 della Costituzione, in tema di diritto alla difesa e di formazione della prova penale secondo il principio del contraddittorio tra le parti, in condizioni di parità, richiedono che il sistema giustizia offra sia all’indagato che all’imputato sufficienti strumenti difensivi. Tenuto conto delle diversità che caratterizzano naturalmente i ruoli dell’accusa e della difesa che impongono asimmetrie genetiche inevitabili, l’obiettivo della ricerca consiste nella disamina degli strumenti idonei a garantire il diritto alla prova della difesa in ogni stato e grado del procedimento, nel tentativo di realizzare compiutamente il principio di parità accusa - difesa nel processo penale. La ricerca si dipana attraverso tre direttrici: l’analisi dello statuto sulle investigazioni difensive nella sua evoluzione storica sino ai giorni nostri, lo studio della prova penale nel sistema americano e, infine, in alcune considerazioni finali espresse in chiave comparatistica. Le suggestioni proposte sono caratterizzate da un denominatore comune, ovvero dal presupposto che per contraddire è necessario conoscere e che solo per tale via sia possibile, finalmente, riconoscere il diritto di difendersi indagando.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Legg-Calvé-Perthes disease (LCPD) often results in a deformity that can be considered as a complex form of femoroacetabular impingement (FAI). Improved preoperative characterization of the FAI problem based on a noninvasive three-dimensional computer analysis may help to plan the appropriate operative treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CLINICAL/METHODICAL ISSUE: Skeletal infections are often a diagnostic and clinical challenge. STANDARD RADIOLOGICAL METHODS: Nuclear imaging modalities used in the diagnostic workup of acute and chronic skeletal infections include three-phase bone scintigraphy and scintigraphy with labelled leucocytes. METHODICAL INNOVATIONS: The introduction of hybrid technologies, such as single photon emission computed tomography/computed tomography (SPECT/CT) has dramatically changed nuclear medical imaging of infections. PERFORMANCE: In general SPECT/CT leads to a considerably more accurate diagnosis than planar or SPECT imaging. ACHIEVEMENTS: Given the integrated acquisition of metabolic, functional and morphological information, SPECT/CT has increased in particular the specificity of three-phase skeletal scanning and scintigraphy with labeled leucocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As lightweight and slender structural elements are more frequently used in the design, large scale structures become more flexible and susceptible to excessive vibrations. To ensure the functionality of the structure, dynamic properties of the occupied structure need to be estimated during the design phase. Traditional analysis method models occupants simply as an additional mass; however, research has shown that human occupants could be better modeled as an additional degree-of- freedom. In the United Kingdom, active and passive crowd models are proposed by the Joint Working Group as a result of a series of analytical and experimental research. It is expected that the crowd models would yield a more accurate estimation to the dynamic response of the occupied structure. However, experimental testing recently conducted through a graduate student project at Bucknell University indicated that the proposed passive crowd model might be inaccurate in representing the impact on the structure from the occupants. The objective of this study is to provide an assessment of the validity of the crowd models proposed by JWG through comparing the dynamic properties obtained from experimental testing data and analytical modeling results. The experimental data used in this study was collected by Firman in 2010. The analytical results were obtained by performing a time-history analysis on a finite element model of the occupied structure. The crowd models were created based on the recommendations from the JWG combined with the physical properties of the occupants during the experimental study. During this study, SAP2000 was used to create the finite element models and to implement the analysis; Matlab and ME¿scope were used to obtain the dynamic properties of the structure through processing the time-history analysis results from SAP2000. The result of this study indicates that the active crowd model could quite accurately represent the impact on the structure from occupants standing with bent knees while the passive crowd model could not properly simulate the dynamic response of the structure when occupants were standing straight or sitting on the structure. Future work related to this study involves improving the passive crowd model and evaluating the crowd models with full-scale structure models and operating data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: Open label study to determine drug dose for a randomized double-blind placebo-controlled parallel study. OBJECTIVES: To assess the efficacy and side effects of oral Delta(9)-tetrahydrocannabinol (THC) and rectal THC-hemisuccinate (THC-HS) in SCI patients. SETTING: REHAB Basel, Switzerland. METHOD: Twenty-five patients with SCI were included in this three-phase study with individual dose adjustment, each consisting of 6 weeks. Twenty-two participants received oral THC open label starting with a single dose of 10 mg (Phase 1, completed by 15 patients). Eight subjects received rectal THC-HS (Phase 2, completed by seven patients). In Phase 3, six patients were treated with oral THC and seven with placebo. Major outcome parameters were the spasticity sum score (SSS) using the Modified Ashworth Scale (MAS) and self-ratings of spasticity. RESULTS: Mean daily doses were 31 mg with THC and 43 mg with THC-HS. Mean SSS for THC decreased significantly from 16.72 (+/-7.60) at baseline to 8.92 (+/-7.14) on day 43. Similar improvement was seen with THC-HS. We observed a significant improvement of SSS with active drug (P=0.001) in the seven subjects who received oral THC in Phase 1 and placebo in Phase 3. Major reasons for drop out were increase of pain and psychological side effects. CONCLUSION: THC is an effective and safe drug in the treatment of spasticity. At least 15-20 mg per day were needed to achieve a therapeutic effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pharmacokinetic interaction between atovaquone, a 1,4-hydroxynaphthoquinone, and zidovudine was examined in an open, randomized, three-phase crossover study in 14 patients infected with human immunodeficiency virus. Atovaquone (750 mg every 12 hours) and zidovudine (200 mg every 8 hours) were given orally alone and in combination. Atovaquone significantly increased the area under the zidovudine concentration-time curve (AUC) (1.82 +/- 0.62 micrograms.hr/ml versus 2.39 +/- 0.68 micrograms.hr/ml; p < 0.05) and decreased the oral clearance of zidovudine (2029 +/- 666 ml/min versus 1512 +/- 464 ml/min; p < 0.05). In contrast, atovaquone tended to decrease the AUC of zidovudine-glucuronide (7.31 +/- 1.51 micrograms.hr/ml versus 6.89 +/- 1.42 micrograms.hr/ml; p < 0.1) and significantly decreased the ratio of AUC zidovudine-glucuronide/AUC zidovudine (4.48 +/- 1.94 versus 3.12 +/- 1.1; p < 0.05). The maximum concentration of zidovudine-glucuronide was significantly lowered by atovaquone (5.7 +/- 1.5 versus 4.57 +/- 0.97 micrograms/ml; p < 0.05). Zidovudine had no effect on the pharmacokinetic disposition of atovaquone. Atovaquone appears to increase the AUC of zidovudine by inhibiting the glucuronidation of zidovudine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Over the last 4 years ADAMTS-13 measurement underwent dramatic progress with newer and simpler methods. AIMS: Blind evaluation of newer methods for their performance characteristics. DESIGN: The literature was searched for new methods and the authors invited to join the evaluation. Participants were provided with a set of 60 coded frozen plasmas that were prepared centrally by dilutions of one ADAMTS-13-deficient plasma (arbitrarily set at 0%) into one normal-pooled plasma (set at 100%). There were six different test plasmas ranging from 100% to 0%. Each plasma was tested 'blind' 10 times by each method and results expressed as percentage vs. the local and the common standard provided by the organizer. RESULTS: There were eight functional and three antigen assays. Linearity of observed-vs.-expected ADAMTS-13 levels assessed as r2 ranged from 0.931 to 0.998. Between-run reproducibility expressed as the (mean) CV for repeated measurements was below 10% for three methods, 10-15% for five methods and up to 20% for the remaining three. F-values (analysis of variance) calculated to assess the capacity to distinguish between ADAMTS-13 levels (the higher the F-value, the better the capacity) ranged from 3965 to 137. Between-method variability (CV) amounted to 24.8% when calculated vs. the local and to 20.5% when calculated vs. the common standard. Comparative analysis showed that functional assays employing modified von Willebrand factor peptides as substrate for ADAMTS-13 offer the best performance characteristics. CONCLUSIONS: New assays for ADAMTS-13 have the potential to make the investigation/management of patients with thrombotic microangiopathies much easier than in the past.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PRINCIPLES: Cardiogoniometry is a non-invasive technique for quantitative three-dimensional vectorial analysis of myocardial depolarization and repolarization. We describe a method of surface electrophysiological cardiac assessment using cardiogoniometry performed at rest to detect variables helpful in identifying coronary artery disease. METHODS: Cardiogoniometry was performed in 793 patients prior to diagnostic coronary angiography. Using 13 variables in men and 10 in women, values from 461 patients were retrospectively analyzed to obtain a diagnostic score that would identify patients having coronary artery disease. This score was then prospectively validated on 332 patients. RESULTS: Cardiogoniometry showed a prospective diagnostic sensitivity of 64%, and a specificity of 82%. ECG diagnostic sensitivity was significantly lower, with 53% and a similar specificity of 75%. CONCLUSIONS: Cardiogoniometry is a new, noninvasive, quantitative electrodiagnostic technique which is helpful in identifying patients with coronary artery disease. It can easily be performed at rest and delivers an accurate, automated diagnostic score.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of an 'anaerobic threshold' plays an important role in the appreciation of an incremental cardiopulmonary exercise test and describes prominent changes of blood lactate accumulation with increasing workload. Two lactate thresholds are discerned during cardiopulmonary exercise testing and used for physical fitness estimation or training prescription. A multitude of different terms are, however, found in the literature describing the two thresholds. Furthermore, the term 'anaerobic threshold' is synonymously used for both, the 'first' and the 'second' lactate threshold, bearing a great potential of confusion. The aim of this review is therefore to order terms, present threshold concepts, and describe methods for lactate threshold determination using a three-phase model with reference to the historical and physiological background to facilitate the practical application of the term 'anaerobic threshold'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transformers are very important elements of any power system. Unfortunately, they are subjected to through-faults and abnormal operating conditions which can affect not only the transformer itself but also other equipment connected to the transformer. Thus, it is essential to provide sufficient protection for transformers as well as the best possible selectivity and sensitivity of the protection. Nowadays microprocessor-based relays are widely used to protect power equipment. Current differential and voltage protection strategies are used in transformer protection applications and provide fast and sensitive multi-level protection and monitoring. The elements responsible for detecting turn-to-turn and turn-to-ground faults are the negative-sequence percentage differential element and restricted earth-fault (REF) element, respectively. During severe internal faults current transformers can saturate and slow down the speed of relay operation which affects the degree of equipment damage. The scope of this work is to develop a modeling methodology to perform simulations and laboratory tests for internal faults such as turn-to-turn and turn-to-ground for two step-down power transformers with capacity ratings of 11.2 MVA and 290 MVA. The simulated current waveforms are injected to a microprocessor relay to check its sensitivity for these internal faults. Saturation of current transformers is also studied in this work. All simulations are performed with the Alternative Transients Program (ATP) utilizing the internal fault model for three-phase two-winding transformers. The tested microprocessor relay is the SEL-487E current differential and voltage protection relay. The results showed that the ATP internal fault model can be used for testing microprocessor relays for any percentage of turns involved in an internal fault. An interesting observation from the experiments was that the SEL-487E relay is more sensitive to turn-to-turn faults than advertized for the transformers studied. The sensitivity of the restricted earth-fault element was confirmed. CT saturation cases showed that low accuracy CTs can be saturated with a high percentage of turn-to-turn faults, where the CT burden will affect the extent of saturation. Recommendations for future work include more accurate simulation of internal faults, transformer energization inrush, and other scenarios involving core saturation, using the newest version of the internal fault model. The SEL-487E relay or other microprocessor relays should again be tested for performance. Also, application of a grounding bank to the delta-connected side of a transformer will increase the zone of protection and relay performance can be tested for internal ground faults on both sides of a transformer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72-80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 x 1024 pixels) with resolution of 1.4 mum(3) per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing approximately 7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72-80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This doctoral thesis presents the computational work and synthesis with experiments for internal (tube and channel geometries) as well as external (flow of a pure vapor over a horizontal plate) condensing flows. The computational work obtains accurate numerical simulations of the full two dimensional governing equations for steady and unsteady condensing flows in gravity/0g environments. This doctoral work investigates flow features, flow regimes, attainability issues, stability issues, and responses to boundary fluctuations for condensing flows in different flow situations. This research finds new features of unsteady solutions of condensing flows; reveals interesting differences in gravity and shear driven situations; and discovers novel boundary condition sensitivities of shear driven internal condensing flows. Synthesis of computational and experimental results presented here for gravity driven in-tube flows lays framework for the future two-phase component analysis in any thermal system. It is shown for both gravity and shear driven internal condensing flows that steady governing equations have unique solutions for given inlet pressure, given inlet vapor mass flow rate, and fixed cooling method for condensing surface. But unsteady equations of shear driven internal condensing flows can yield different “quasi-steady” solutions based on different specifications of exit pressure (equivalently exit mass flow rate) concurrent to the inlet pressure specification. This thesis presents a novel categorization of internal condensing flows based on their sensitivity to concurrently applied boundary (inlet and exit) conditions. The computational investigations of an external shear driven flow of vapor condensing over a horizontal plate show limits of applicability of the analytical solution. Simulations for this external condensing flow discuss its stability issues and throw light on flow regime transitions because of ever-present bottom wall vibrations. It is identified that laminar to turbulent transition for these flows can get affected by ever present bottom wall vibrations. Detailed investigations of dynamic stability analysis of this shear driven external condensing flow result in the introduction of a new variable, which characterizes the ratio of strength of the underlying stabilizing attractor to that of destabilizing vibrations. Besides development of CFD tools and computational algorithms, direct application of research done for this thesis is in effective prediction and design of two-phase components in thermal systems used in different applications. Some of the important internal condensing flow results about sensitivities to boundary fluctuations are also expected to be applicable to flow boiling phenomenon. Novel flow sensitivities discovered through this research, if employed effectively after system level analysis, will result in the development of better control strategies in ground and space based two-phase thermal systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large Power transformers, an aging and vulnerable part of our energy infrastructure, are at choke points in the grid and are key to reliability and security. Damage or destruction due to vandalism, misoperation, or other unexpected events is of great concern, given replacement costs upward of $2M and lead time of 12 months. Transient overvoltages can cause great damage and there is much interest in improving computer simulation models to correctly predict and avoid the consequences. EMTP (the Electromagnetic Transients Program) has been developed for computer simulation of power system transients. Component models for most equipment have been developed and benchmarked. Power transformers would appear to be simple. However, due to their nonlinear and frequency-dependent behaviors, they can be one of the most complex system components to model. It is imperative that the applied models be appropriate for the range of frequencies and excitation levels that the system experiences. Thus, transformer modeling is not a mature field and newer improved models must be made available. In this work, improved topologically-correct duality-based models are developed for three-phase autotransformers having five-legged, three-legged, and shell-form cores. The main problem in the implementation of detailed models is the lack of complete and reliable data, as no international standard suggests how to measure and calculate parameters. Therefore, parameter estimation methods are developed here to determine the parameters of a given model in cases where available information is incomplete. The transformer nameplate data is required and relative physical dimensions of the core are estimated. The models include a separate representation of each segment of the core, including hysteresis of the core, λ-i saturation characteristic, capacitive effects, and frequency dependency of winding resistance and core loss. Steady-state excitation, and de-energization and re-energization transients are simulated and compared with an earlier-developed BCTRAN-based model. Black start energization cases are also simulated as a means of model evaluation and compared with actual event records. The simulated results using the model developed here are reasonable and more correct than those of the BCTRAN-based model. Simulation accuracy is dependent on the accuracy of the equipment model and its parameters. This work is significant in that it advances existing parameter estimation methods in cases where the available data and measurements are incomplete. The accuracy of EMTP simulation for power systems including three-phase autotransformers is thus enhanced. Theoretical results obtained from this work provide a sound foundation for development of transformer parameter estimation methods using engineering optimization. In addition, it should be possible to refine which information and measurement data are necessary for complete duality-based transformer models. To further refine and develop the models and transformer parameter estimation methods developed here, iterative full-scale laboratory tests using high-voltage and high-power three-phase transformer would be helpful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While nucleation of solids in supercooled liquids is ubiquitous [15, 65, 66], surface crystallization, the tendency for freezing to begin preferentially at the liquid-gas interface, has remained puzzling [74, 18, 68, 69, 51, 64, 72, 16]. Here we employ high-speed imaging of supercooled water drops to study the phenomenon of heterogeneous surface crystallization. Our geometry avoids the "point-like contact" of prior experiments by providing a simple, symmetric contact line (triple line defined by the substrate-liquid-air interface) for a drop resting on a homogeneous silicon substrate. We examine three possible mechanisms that might explain these laboratory observations: (i) Line Tension at the triple line, (ii) Thermal Gradients within the droplets and (iii) Surface Texture. In our first study we record nearly perfect spatial uniformity in the immersed (liquid-substrate) region and, thereby, no preference for nucleation at the triple line. In our second study, no influence of thermal gradients on the preference for freezing at the triple line was observed. Motivated by the conjectured importance of line tension (τ) [1, 66] for heterogeneous nucleation, we also searched for evidence of a transition to surface crystallization at length scales on the order of δ ∼ τ/σ, where σ is the surface tension [14]; poorly constrained τ [49] leads to δ ranging from microns to nanometers. We demonstrate that nano-scale texture causes a shift in the nucleation to the three-phase contact line, while micro-scale texture does not. The possibility of a critical length scale has implications for the effectiveness of nucleation catalysts, including formation of ice in atmospheric clouds [7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The aortomitral continuity (AMC) has been described as a site of origin for ventricular tachycardias (VT) in structurally normal hearts. There is a paucity of data on the contribution of this region to VTs in patients with structural heart disease. METHODS AND RESULTS: Data from 550 consecutive patients undergoing catheter ablation for VT associated with structural heart disease were reviewed. Twenty-one (3.8%) had a VT involving the peri-AMC region (age, 62.7+/-11 years; median left ventricular ejection fraction, 43.6+/-17%). Structural heart disease was ischemic in 7 (33%), dilated cardiomyopathy in 10 (47.6%), and valvular cardiomyopathy in 4 (19%) patients, respectively. After 1.9+/-0.8 catheter ablation procedures (including 3 transcoronary ethanol ablations) the peri-AMC VT was not inducible in 19 patients. The remaining 2 patients underwent cryosurgical ablation. Our first catheter ablation procedure was less often successful (66.7%) for peri-AMC VTs compared with that for 246 VTs originating from the LV free wall (81.4%, P=0.03). During a mean follow-up of 1.9+/-2.1 years, 12 (57.1%) patients remained free of VT, peri-AMC VT recurred in 7 patients, and 1 patient had recurrent VT from a remote location. Three patients died. Analysis of 50 normal coronary angiograms demonstrated an early septal branch supplying the peri-AMC area in 58% of cases that is a potential target for ethanol ablation. CONCLUSIONS: VTs involving the peri-AMC region occur in patients with structural heart disease and appear to be more difficult to ablate compared with VTs originating from the free LV wall. This region provides unique challenges for radiofrequency ablation, but cryosurgery and transcoronary alcohol ablation appear feasible in some cases.