1000 resultados para thermodynamic function
Resumo:
Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross-links. It was reported earlier that FANCD2 co-localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid-S to G2 phase within sites containing single-stranded DNA (ssDNA) intermediates, or at sites of DNA damage, such as those created by restriction endonucleases and laser irradiation. Purified FANCD2, a ring-like particle by electron microscopy, preferentially bound ssDNA over various DNA substrates. Inhibition of MRE11 nuclease activity by Mirin decreased the number of FANCD2 foci formed in vivo. We propose that FANCD2 binds to ssDNA arising from MRE11-processed DNA double-strand breaks. Our data establish MRN as a crucial regulator of FANCD2 stability and function in the DNA damage response.
Resumo:
INTRODUCTION: A significant proportion of prematurely born children encounter behavioral difficulties, such as attention deficit or hyperactivity, which could be due to executive function disorders. AIMS: To examine whether the standard neurodevelopmental assessment offered to premature children in Switzerland recognizes executive function disorders. METHODS: The study population consisted of 49 children born before 29 weeks of gestation who were examined between 5 and 6 years of age with a standard assessment, with additional items to assess executive functioning. Children with severe neurodevelopmental impairment were excluded (mental retardation, cerebral palsy, autism). Standard assessment consisted in the Kaufman Assessment Battery for Children (K-ABC), which comprises three subscales: sequential processes (analysis of sequential information), simultaneous processes (global analysis of visual information), and composite mental processes (CMP) (result of the other two scales), as well as a behavioral evaluation using the standardized Strengths and Difficulties Questionnaire (SDQ). Executive functioning was assessed with tasks evaluating visual attention, divided attention, and digit memory as well as with a specialized questionnaire, the Behavior Rating Index of Executive Functions (BRIEF), which evaluates several aspects of executive function (regulation, attention, flexibility, working memory, etc). RESULTS: Children were divided according to their results on the three K-ABC scales (< or>85), and the different neuropsychological tasks assessing executive function were compared between the groups. The CMP did not differentiate children with executive difficulties, whereas a score<85 on the sequential processes was significantly associated with worse visual and divided attention. There was a strong correlation between the SDQ and the BRIEF questionnaires. For both questionnaires, children receiving psychotherapy had significantly higher results. Children who presented behavioral problems assessed with the SDQ presented significantly higher scores on the BRIEF. CONCLUSION: A detailed analysis of the standard neurodevelopmental assessment allows the identification of executive function disorders in premature children. Children who performed below 85 on the sequential processes of the K-ABC had significantly more attentional difficulties on the neuropsychological tasks and therefore have to be recognized and carefully followed. Emotional regulation had a strong correlation with behavioral difficulties, which were suitably assessed with the SDQ, recognized by the families, and treated.
Resumo:
RPE65 is a retinoid isomerase required for the production of 11-cis-retinal, the chromophore of both cone and rod visual pigments. We recently established an R91W knock-in mouse strain as homologous animal model for patients afflicted by this mutation in RPE65. These mice have impaired vision and can only synthesize minute amounts of 11-cis-retinal. Here, we investigated the consequences of this chromophore insufficiency on cone function and pathophysiology. We found that the R91W mutation caused cone opsin mislocalization and progressive geographic cone atrophy. Remnant visual function was mostly mediated by rods. Ablation of rod opsin corrected the localization of cone opsin and improved cone retinal function. Thus, our analyses indicate that under conditions of limited chromophore supply rods and cones compete for 11-cis-retinal that derives from regeneration pathway(s) which are reliant on RPE65. Due to their higher number and the instability of cone opsin, rods are privileged under this condition while cones suffer chromophore deficiency and degenerate. These findings reinforce the notion that in patients any effective gene therapy with RPE65 needs to target the cone-rich macula directly to locally restore the cones' chromophore supply outside the reach of rods.
Resumo:
A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.
Resumo:
An accidental burst of a pressure vessel is an uncontrollable and explosion-like batch process. In this study it is called an explosion. The destructive effectof a pressure vessel explosion is relative to the amount of energy released in it. However, in the field of pressure vessel safety, a mutual understanding concerning the definition of explosion energy has not yet been achieved. In this study the definition of isentropic exergy is presented. Isentropic exergy is the greatest possible destructive energy which can be obtained from a pressure vessel explosion when its state changes in an isentropic way from the initial to the final state. Finally, after the change process, the gas has similar pressure and flow velocity as the environment. Isentropic exergy differs from common exergy inthat the process is assumed to be isentropic and the final gas temperature usually differs from the ambient temperature. The explosion process is so fast that there is no time for the significant heat exchange needed for the common exergy.Therefore an explosion is better characterized by isentropic exergy. Isentropicexergy is a characteristic of a pressure vessel and it is simple to calculate. Isentropic exergy can be defined also for any thermodynamic system, such as the shock wave system developing around an exploding pressure vessel. At the beginning of the explosion process the shock wave system has the same isentropic exergyas the pressure vessel. When the system expands to the environment, its isentropic exergy decreases because of the increase of entropy in the shock wave. The shock wave system contains the pressure vessel gas and a growing amount of ambient gas. The destructive effect of the shock wave on the ambient structures decreases when its distance from the starting point increases. This arises firstly from the fact that the shock wave system is distributed to a larger space. Secondly, the increase of entropy in the shock waves reduces the amount of isentropic exergy. Equations concerning the change of isentropic exergy in shock waves are derived. By means of isentropic exergy and the known flow theories, equations illustrating the pressure of the shock wave as a function of distance are derived. Amethod is proposed as an application of the equations. The method is applicablefor all shapes of pressure vessels in general use, such as spheres, cylinders and tubes. The results of this method are compared to measurements made by various researchers and to accident reports on pressure vessel explosions. The test measurements are found to be analogous with the proposed method and the findings in the accident reports are not controversial to it.
Resumo:
The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.
Resumo:
The simple single-ion activity coefficient equation originating from the Debye-Hückel theory was used to determine the thermodynamic and stoichiometric dissociation constants of weak acids from data concerning galvanic cells. Electromotive force data from galvanic cells without liquid junctions, which was obtained from literature, was studied in conjuction with the potentiometric titration data relating to aqueous solutions at 298.15 K. The dissociation constants of weak acids could be determined by the presented techniques and almost all the experimental data studied could be interpreted within the range of experimental error. Potentiometric titration has been used here and the calculation methods were developed to obtain the thermodynamic and stoichiometric dissociation constants of some weak acids in aqueous solutions at 298.15 K. The ionic strength of titrated solutions were adjusted using an inert electrolyte, namely, sodium or potassium chloride. Salt content alonedetermines the ionic strength. The ionic strength of the solutions studied varied from 0.059 mol kg-1 to 0.37 mol kg-1, and in some cases up to 1.0 mol kg-1. The following substances were investigated using potentiometric titration: aceticacid, propionic acid, L-aspartic acid, L-glutamic acid and bis(2,2-dimethyl-3-oxopropanol) amine.
Resumo:
Specific cellular functions, such as proliferation, survival, growth, or senescence, require a particular adaptive metabolic response, which is fine tuned by members of the cell cycle regulators families. Currently, proteins such as cyclins, CDKs, or E2Fs are being studied in the context of cell proliferation and survival, cell signaling, cell cycle regulation, and cancer. We show in this review that cellular, animal and molecular studies provided enough evidence to prove that these factors play, in addition, crucial roles in the control of mitochondrial function; finally resulting in a dual proliferative and metabolic response.
Resumo:
In order to determine the penetration of the thermal wave in the papaya fruit pulp (Carica papaya L.), cv. Golden, thermal diffusivity of the pulp was obtained measuring temperature at four different depths. Measurements were carried out initially with the fruit on the first stage of maturity. The changes of the thermal diffusivity were expressed as a function of ripening. A temporal decrease of the thermal diffusivity was observed. Chemical (pH, soluble solids and total titratable acidity) and physical (pulp firmness) properties were measured as well and the results were compared to the thermal diffusivity change.
Resumo:
OBJECTIVES: Non-steroidal anti-inflammatory drugs (NSAIDs) may cause kidney damage. This study assessed the impact of prolonged NSAID exposure on renal function in a large rheumatoid arthritis (RA) patient cohort. METHODS: Renal function was prospectively followed between 1996 and 2007 in 4101 RA patients with multilevel mixed models for longitudinal data over a mean period of 3.2 years. Among the 2739 'NSAID users' were 1290 patients treated with cyclooxygenase type 2 selective NSAIDs, while 1362 subjects were 'NSAID naive'. Primary outcome was the estimated glomerular filtration rate according to the Cockroft-Gault formula (eGFRCG), and secondary the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration formula equations and serum creatinine concentrations. In sensitivity analyses, NSAID dosing effects were compared for patients with NSAID registration in ≤/>50%, ≤/>80% or ≤/>90% of assessments. FINDINGS: In patients with baseline eGFRCG >30 mL/min, eGFRCG evolved without significant differences over time between 'NSAID users' (mean change in eGFRCG -0.87 mL/min/year, 95% CI -1.15 to -0.59) and 'NSAID naive' (-0.67 mL/min/year, 95% CI -1.26 to -0.09, p=0.63). In a multivariate Cox regression analysis adjusted for significant confounders age, sex, body mass index, arterial hypertension, heart disease and for other insignificant factors, NSAIDs were an independent predictor for accelerated renal function decline only in patients with advanced baseline renal impairment (eGFRCG <30 mL/min). Analyses with secondary outcomes and sensitivity analyses confirmed these results. CONCLUSIONS: NSAIDs had no negative impact on renal function estimates but in patients with advanced renal impairment.
Resumo:
A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron–sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron–sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary cooccurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell.
Resumo:
Genome-wide association studies (GWASs) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, single-nucleotide polymorphisms (SNPs) at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1, and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus, which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFR decline of 3 ml/min per 1.73 m(2) or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11, and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 h after gentamicin treatment compared with controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline.Kidney International advance online publication, 10 December 2014; doi:10.1038/ki.2014.361.