954 resultados para thermal image segmentation
Resumo:
It is well known that radiative corrections evaluated in nontrivial backgrounds lead to effective dispersion relations which are not Lorentz invariant. Since gravitational interactions increase with energy, gravity-induced radiative corrections could be relevant for the trans-Planckian problem. As a first step to explore this possibility, we compute the one-loop radiative corrections to the self-energy of a scalar particle propagating in a thermal bath of gravitons in Minkowski spacetime. We obtain terms which originate from the thermal bath and which indeed break the Lorentz invariance that possessed the propagator in the vacuum. Rather unexpectedly, however, the terms which break Lorentz invariance vanish in the high three-momentum limit. We also found that the imaginary part, which gives the rate of approach to thermal equilibrium, vanishes at one loop.
Resumo:
In the search for high efficiency in root studies, computational systems have been developed to analyze digital images. ImageJ and Safira are public-domain systems that may be used for image analysis of washed roots. However, differences in root properties measured using ImageJ and Safira are supposed. This study compared values of root length and surface area obtained with public-domain systems with values obtained by a reference method. Root samples were collected in a banana plantation in an area of a shallower Typic Carbonatic Haplic Cambisol (CXk), and an area of a deeper Typic Haplic Ta Eutrophic Cambisol (CXve), at six depths in five replications. Root images were digitized and the systems ImageJ and Safira used to determine root length and surface area. The line-intersect method modified by Tennant was used as reference; values of root length and surface area measured with the different systems were analyzed by Pearson's correlation coefficient and compared by the confidence interval and t-test. Both systems ImageJ and Safira had positive correlation coefficients with the reference method for root length and surface area data in CXk and CXve. The correlation coefficient ranged from 0.54 to 0.80, with lowest value observed for ImageJ in the measurement of surface area of roots sampled in CXve. The IC (95 %) revealed that root length measurements with Safira did not differ from that with the reference method in CXk (-77.3 to 244.0 mm). Regarding surface area measurements, Safira did not differ from the reference method for samples collected in CXk (-530.6 to 565.8 mm²) as well as in CXve (-4231 to 612.1 mm²). However, measurements with ImageJ were different from those obtained by the reference method, underestimating length and surface area in samples collected in CXk and CXve. Both ImageJ and Safira allow an identification of increases or decreases in root length and surface area. However, Safira results for root length and surface area are closer to the results obtained with the reference method.
Resumo:
Introduction. Development of the fetal brain surfacewith concomitant gyrification is one of the majormaturational processes of the human brain. Firstdelineated by postmortem studies or by ultrasound, MRIhas recently become a powerful tool for studying in vivothe structural correlates of brain maturation. However,the quantitative measurement of fetal brain developmentis a major challenge because of the movement of the fetusinside the amniotic cavity, the poor spatial resolution,the partial volume effect and the changing appearance ofthe developing brain. Today extensive efforts are made todeal with the âeurooepost-acquisitionâeuro reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution (Rousseau, F., 2006;Jiang, S., 2007). We here propose a framework devoted tothe segmentation of the basal ganglia, the gray-whitetissue segmentation, and in turn the 3D corticalreconstruction of the fetal brain. Method. Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences in fetuses aged from 29 to 32gestational weeks (slice thickness 5.4mm, in planespatial resolution 1.09mm). For each fetus, 6 axialvolumes shifted by 1 mm were acquired (about 1 min pervolume). First, each volume is manually segmented toextract fetal brain from surrounding fetal and maternaltissues. Inhomogeneity intensity correction and linearintensity normalization are then performed. A highspatial resolution image of isotropic voxel size of 1.09mm is created for each fetus as previously published byothers (Rousseau, F., 2006). B-splines are used for thescattered data interpolation (Lee, 1997). Then, basalganglia segmentation is performed on this superreconstructed volume using active contour framework witha Level Set implementation (Bach Cuadra, M., 2010). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed (Bach Cuadra, M., 2009). Theresulting white matter image is then binarized andfurther given as an input in the Freesurfer software(http://surfer.nmr.mgh.harvard.edu/) to provide accuratethree-dimensional reconstructions of the fetal brain.Results. High-resolution images of the cerebral fetalbrain, as obtained from the low-resolution acquired MRI,are presented for 4 subjects of age ranging from 29 to 32GA. An example is depicted in Figure 1. Accuracy in theautomated basal ganglia segmentation is compared withmanual segmentation using measurement of Dice similarity(DSI), with values above 0.7 considering to be a verygood agreement. In our sample we observed DSI valuesbetween 0.785 and 0.856. We further show the results ofgray-white matter segmentation overlaid on thehigh-resolution gray-scale images. The results arevisually checked for accuracy using the same principlesas commonly accepted in adult neuroimaging. Preliminary3D cortical reconstructions of the fetal brain are shownin Figure 2. Conclusion. We hereby present a completepipeline for the automated extraction of accuratethree-dimensional cortical surface of the fetal brain.These results are preliminary but promising, with theultimate goal to provide âeurooemovieâeuro of the normal gyraldevelopment. In turn, a precise knowledge of the normalfetal brain development will allow the quantification ofsubtle and early but clinically relevant deviations.Moreover, a precise understanding of the gyraldevelopment process may help to build hypotheses tounderstand the pathogenesis of several neurodevelopmentalconditions in which gyrification have been shown to bealtered (e.g. schizophrenia, autismâeuro¦). References.Rousseau, F. (2006), 'Registration-Based Approach forReconstruction of High-Resolution In Utero Fetal MR Brainimages', IEEE Transactions on Medical Imaging, vol. 13,no. 9, pp. 1072-1081. Jiang, S. (2007), 'MRI of MovingSubjects Using Multislice Snapshot Images With VolumeReconstruction (SVR): Application to Fetal, Neonatal, andAdult Brain Studies', IEEE Transactions on MedicalImaging, vol. 26, no. 7, pp. 967-980. Lee, S. (1997),'Scattered data interpolation with multilevel B-splines',IEEE Transactions on Visualization and Computer Graphics,vol. 3, no. 3, pp. 228-244. Bach Cuadra, M. (2010),'Central and Cortical Gray Mater Segmentation of MagneticResonance Images of the Fetal Brain', ISMRM Conference.Bach Cuadra, M. (2009), 'Brain tissue segmentation offetal MR images', MICCAI.
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.
Resumo:
Despite the considerable environmental importance of mercury (Hg), given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique), were used in validation of the method, which proved to be accurate and precise.
Resumo:
Quantitative information from magnetic resonance imaging (MRI) may substantiate clinical findings and provide additional insight into the mechanism of clinical interventions in therapeutic stroke trials. The PERFORM study is exploring the efficacy of terutroban versus aspirin for secondary prevention in patients with a history of ischemic stroke. We report on the design of an exploratory longitudinal MRI follow-up study that was performed in a subgroup of the PERFORM trial. An international multi-centre longitudinal follow-up MRI study was designed for different MR systems employing safety and efficacy readouts: new T2 lesions, new DWI lesions, whole brain volume change, hippocampal volume change, changes in tissue microstructure as depicted by mean diffusivity and fractional anisotropy, vessel patency on MR angiography, and the presence of and development of new microbleeds. A total of 1,056 patients (men and women ≥ 55 years) were included. The data analysis included 3D reformation, image registration of different contrasts, tissue segmentation, and automated lesion detection. This large international multi-centre study demonstrates how new MRI readouts can be used to provide key information on the evolution of cerebral tissue lesions and within the macrovasculature after atherothrombotic stroke in a large sample of patients.
Resumo:
Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.
Resumo:
Background: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant) species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays.Results: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C), also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments.Conclusion: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required in any future approach if we want to identify the relevant candidate genes.
Resumo:
The present research project was designed to determine thermal properties, such as coefficient of thermal expansion (CTE) and thermal conductivity, of Iowa concrete pavement materials. These properties are required as input values by the Mechanistic-Empirical Pavement Design Guide (MEPDG). In this project, a literature review was conducted to determine the factors that affect thermal properties of concrete and the existing prediction equations for CTE and thermal conductivity of concrete. CTE tests were performed on various lab and field samples of portland cement concrete (PCC) at the Iowa Department of Transportation and Iowa State University. The variations due to the test procedure, the equipment used, and the consistency of field batch materials were evaluated. The test results showed that the CTE variations due to test procedure and batch consistency were less than 5%, and the variation due to the different equipment was less than 15%. Concrete CTE values were significantly affected by different types of coarse aggregate. The CTE values of Iowa concrete made with limestone+graval, quartzite, dolomite, limestone+dolomite, and limestone were 7.27, 6.86, 6.68, 5.83, and 5.69 microstrain/oF (13.08, 12.35, 12.03, 10.50, and 10.25 microstrain/oC), respectively, which were all higher than the default value of 5.50 microstrain/oF in the MEPDG program. The thermal conductivity of a typical Iowa PCC mix and an asphalt cement concrete (ACC) mix (both with limestone as coarse aggregate) were tested at Concrete Technology Laboratory in Skokie, Illinois. The thermal conductivity was 0.77 Btu/hr•ft•oF (1.33 W/m•K) for PCC and 1.21 Btu/hr•ft•oF (2.09 W/m•K) for ACC, which are different from the default values (1.25 Btu/hr•ft•oF or 2.16 W/m•K for PCC and 0.67 Btu/hr•ft•oF or 1.16 W/m•K for ACC) in the MEPDG program. The investigations onto the CTE of ACC and the effects of concrete materials (such as cementitious material and aggregate types) and mix proportions on concrete thermal conductivity are recommended to be considered in future studies.