991 resultados para test preparation
Resumo:
Preparation of 238U on 2μm Al foils by molecular plating technique is described. In order to obtain optimum conditions for deposition, several parameters influencing the quality of layers such as current density, distance between the anode and cathode and the deposition time were investigated. The target thickness was determined by spectrophotometry. The uniformity and morphology of the target surface were studied by means of scanning electron microscopy, energy dispersive X-ray spectrometry and Infrared spectra. The results show that uranium is deposited in its oxide or hydroxide form uniformly and adherently onto the foil.
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
Superconducting electron cyclotron resonance (ECR) ion source with advanced design in Lanzhou (SECRAL) is a next generation ECR ion source and aims for developing a very compact superconducting ECR ion source with a structure and high performances for highly charged ion-beam production. The ion source was designed to be operated at 18 GHz at initial operation and finally will be extended to 28 GHz. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. At full excitation, this magnet assembly can produce peak mirror fields on the axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. What is different from the traditional design, such as LBNL VENUS and LNS SERSE, is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. SECRAL may open the way for building a compact and high-performance 18-28 GHz superconducting ECR ion source. Very preliminary commissioning results are promising. Detailed design, construction issues and very preliminary test results of the ion source at 18 GHz are presented.
Resumo:
Gold nanowires with diameters (d) between,15 run and 200 urn and with length/diameter ratio of 700 were prepared in ion-track templates with electrode position method. The morphology and crystal structure of the gold nanowires were Studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The 200 nm (d) gold nanowires preferred orientation along the [100] direction were formed at the deposition voltage of 1.5 V (Without reference electrode). The optical properties of gold nanowire arrays embedded in ion-track templates were studied by UV-Vis spectrophotometer. There was a strong absorption peak at 539 nm for 45 nm (d) gold nanowire arrays. With the diameter of gold nanowires increasing, the absorption peak shifted to the longer wavelength. At last, the result was discussed combined with surface plasmon resonance of gold nanoparticles.
Resumo:
CdS nanotubes and nanowires have been synthesized with controlled dimensions by means of template-electrodeposition method in etched ion-track membranes. The diameters of nanotubes and nanowires are between 20 and I 10 nm, and the lengths are up to tens of micrometers. X-ray diffraction (XRD) and selected area electron diffraction (SAED) pattern investigations demonstrate that CdS nanotubes and nanowires are polycrystalline in nature. The UV-vis absorption spectra of CdS nanotubes and nanowires embedded in polycarbonate (PC) membranes show that the absorption edges of PC films shift towards the shorter wavelength, with decreasing diameters of the deposited nanostructures. The results indicate that nanowires are formed from nanotubes by nanotube-stuffing-growth mechanism.