943 resultados para superoxide anion
Resumo:
The characteristics of inorganic carbon assimilation by photosynthesis were investigated in male and female gametophytes and juvenile sporophytes of Undaria pinnatifida. Gametophytes and sporophytes have detectable extracellular and intracellular carbonic anhydrase (CA) activity, and the CA inhibitor, acetazolamide (AZ), significantly inhibited their photosynthesis O-2 evolution. In pH-drift experiments, it was found that gametophytes did not raise the final pH of seawater above 9.00 (CO2 concentrations of about 2.2 mu M), indicating a low ability to utilize inorganic carbon. In contrast, sporophytes rapidly raised pH to over 9.53 and depleted the free CO2 Concentration to less than 0.16 mu M. The apparent photosynthetic affinity for CO2 was almost the same for gametophytes and sporophytes, whereas gametophytes had a much lower affinity for HCO3- than sporophytes. Two inhibitors of band 3 anion exchange protein (DIDS and SITS) inhibited the photosynthesis of gametophytes but not that of sporophytes. It was indicated that both gametophytes and sporophytes were capable of using HCO3-, which involved the external CA activity, and a direct HCO3- use also occurred in the former, but the latter showed a greater capacity of HCO3- use than the former. In addition, male and female gametophytes did not show great differences in the inorganic carbon uptake mechanism underlying photosynthesis.
Resumo:
Hexachlorobenzene (HCB)-induced oxidative damages have been published in rats while the effects have not yet been reported in fishes. Juvenile common carps (Cyprinus carpio) were exposed to waterborne HCB from 2 to 200 mu g l(-1) for 5, 10 or 20 days. Liver and brain were analyzed for various parameters of oxidative stress. There were no significant changes of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver after 5 or 10 days exposure, whereas obvious drops were observed at higher concentrations after 20 days exposure. Significant decreases of GSH content and SOD activity in brain were found during all the exposure days. In brain, HCB also significantly elevated the contents of reactive oxygen species (ROS), thiobarbituric acid-reactive substances (TBARS, as an indicator of lipid peroxidation products), glutathione disulfide (GSSG), and activities of nitric oxide synthase (NOS), glutathione peroxidase (GPx), and glutathione reductase (GR), and inhibited activities of acetylcholinesterase (AchE) and glutathione S-transferase (GST). The results clearly demonstrated that environmentally possible level of HCB could result in oxidative stress in fish and brain was a sensitive target organ of HCB toxicity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A 11-week growth trial was conducted in a flow-through system with juvenile gibel carp Carassius auratus gibelio to evaluate the effects of gradual replacement of fish meal (FM) by meat and bone meal (MBM) on growth performance, phosphorus (P) and nitrogen (N) loading. Six isonitrogenous (crude protein: 410 g kg(-1)) and isoenergetic (gross energy: 18 kJ g(-1)) diets were formulated. FM was used as the control protein. In the other five diets, 20, 40, 60, 80 and 100% FM protein was substituted with MBM20, MBM40, MBM60, MBM80, MBM100, respectively. Total P content in the diets ranged from 16.0 to 28.3 g kg(-1) and the available P was 5.0-6.6 g kg(-1). The results showed that the best growth was achieved with fish fed on the control diet and MBM20. Final body weight, weight gain, feed efficiency, protein retention efficiency and energy retention efficiency decreased with increased dietary MBM. No significant differences were found in the feeding rate and hepatosomatic index between the groups. Apparent digestibility coefficient (ADC) of dry matter, protein and P decreased with increase in dietary MBM, while there were no significant differences in the ADC of energy. P and N retention decreased linearly while P and N loading increased linearly with the increased dietary MBM levels. No significant differences were observed in the activity of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase, as well as pyruvate kinase in liver or in serum. Total superoxide dismutase activity in MBM20 was significantly higher than that of MBM100.
Resumo:
Microcystins are cyclic heptapeptide hepatoxins produced by many species of cyanobacteria. The toxic effects and mechanism of microcystins on animals have been well studied both in vivo and in vitro. It was also reported that microcystins had adverse effects on plants. However, to our knowledge, there is no information about the toxic effects and mechanism of microcystins on plant suspension cells. In this study, Arabidopsis thaliana suspension cells were exposed to a range dose of microcystin-RR. Lipid peroxidation, a main manifestation of oxidative damage, was studied and a time- and dose-dependent increase in malondiadehyde was observed. In contrast, glutathione (GSH) levels in the cells decreased after 48 h treatment with 1 and 5 mg/L of microcystin-RR. The activities of superoxide dismutase (SOD) and catalase (CAT) increased significantly after 48 h exposure to I and 5 mg/L of microcystin-RR, but glutathione S-transferase (GST) activity showed no difference compared with the control. These results clearly indicate that microcystin-RR is able to cause oxidative damage in A. thaliana suspension cells. Decrease of GSH content and increases of SOD and CAT activities reveal that the antioxidant system may play an important role in eliminating or alleviating the toxicity of microcystin-RR. The possible toxicity mechanism of microcystin-RR on the A. thaliana suspension cells is also discussed in this paper. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins are cyclic heptapeptide hepatoxins produced by cyanobacteria. It has been shown that microcystins have adverse effects on animals and on plants as well. Previous researches also indicated that microcystins were capable of inducing oxidative damage in animals both in vivo and in vitro. In this study, tobacco BY-2 suspension cell line was applied to examine the effects of microcystin-RR on plant cells. Cell viability and five biochemical parameters including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPX) and peroxide dismutase (POD) were investigated when cells were exposed to 50 mg/L microcystin-RR. Results showed that microcystin-RR evoked decline of the cell viability to approximately 80% after treating for 144 h. ROS levels, POD and GPX activities of the treated cells were gradually increased with a time dependent manner. Changes of SOD and CAT activities were also detected in BY-2 cells. After 168 h recovery, ROS contents, POD, GPX and CAT activities returned to normal levels. These results suggest that the microcystin-RR can cause the increase of ROS contents in plant cells and these changes led to oxidant stress, at the same time, the plant cells would improve their antioxidant abilities to combat mirocystin-RR induced oxidative injury. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of gluathione, an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The mechanism of inorganic carbon (C-i) acquisition by the economic brown macroalga, Hizikia fusiforme (Harv.) Okamura (Sargassaceae), was investigated to characterize its photosynthetic physiology. Both intracellular and extracellular carbonic anhydrase (CA) were detected, with the external CA activity accounting for about 5% of the total. Hizikia fusiforme showed higher rates of photosynthetic oxygen evolution at alkaline pH than those theoretically derived from the rates of uncatalyzed CO2 production from bicarbonate and exhibited a high pH compensation point (pH 9.66). The external CA inhibitor, acetazolamide, significantly depressed the photosynthetic oxygen evolution, whereas the anion-exchanger inhibitor 4,4'-diisothiocyano-stilbene-2,2'-disulfonate had no inhibitory effect on it, implying the alga was capable of using HCO3- as a source of C-i for its photosynthesis via the mediation of the external CA. CO2 concentrations in the culture media affected its photosynthetic properties. A high level of CO2 (10,000 ppmv) resulted in a decrease in the external CA activity; however, a low CO2 level (20 ppmv) led to no changes in the external CA activity but raised the intracellular CA activity. Parallel to the reduction in the external CA activity at the high CO2 was a reduction in the photosynthetic CO2 affinity. Decreased activity of the external CA in the high CO2 grown samples led to reduced sensitiveness of photosynthesis to the addition of acetazolamide at alkaline pH. It was clearly indicated that H. fusiforme, which showed CO2-limited photosynthesis with the half-saturating concentration of C-i exceeding that of seawater, did not operate active HCO3- uptake but used it via the extracellular CA for its photosynthetic carbon fixation.
Resumo:
The freshwater, bloom-forming cyanobacterium (blue-green alga) Microcystis aeruginosa produces a peptide hepatotoxin, which causes the damage of animal liver. Recently, toxic Microcystis blooms frequently occur in the eutrophic Dianchi Lake (300 km(2) and located in the South-Westem of China). Microcystin-LR from Microcystis in Dianchi was isolated and purified by high performance liquid chromatography (HPLC) and its toxicity to mouse and fish liver was studied (Li et al., 2001). In this study, six biochemical parameters (reactive oxygen species, glutathione, superoxide dismutase, catalase, glutathione peroxide and glutathione S-transferase) were determined in common carp hepatocytes when the cells were exposed to 10 mug microcystin-LR per litre. The results showed that reactive oxygen species (ROS) contents increased by more than one-time compared with the control after 6 h exposure to the toxin. In contrast, glutathione (GSH) levels in the hepatocytes exposed to microcystin-LR decreased by 47% compared with the control. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxide (GSH-Px) increased significantly after 6 h exposure to microcystin-LR, but glutathione S-transferase (GST) activity showed no difference from the control. These results suggested that the toxicity of microcystin-LR caused the increase of ROS contents and the depletion of GSH in hepatocytes exposed to the toxin and these changes led to oxidant shock in hepatocytes. Increases of SOD, CAT and GSH-Px activities revealed that these three kinds of antioxidant enzymes might play important roles in eliminating the excessive ROS. This paper also examined the possible toxicity mechanism of microcystin-LR on the fish hepatocytes and the results were similar to those with mouse hepatocytes. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper reports a new method for detection of ROS scavengers including superoxide dismutase, ascorbic acid and glutathione based on a 'probe' of peroxidase-oxidase biochemical oscillator. The oscillation period and amplitude change with different concentrations of scavengers. The linear ranges of superoxide dismutase, ascorbic acid and glutathione are respectively 1.56 x 10(-4)-1.56 x 10(-3) mg mL(-1), 1.75 x 10(-7) -1.75 x 10(-5) mol L-1 and 9.38 x 10(-7) -7.5 x 10(-5) mol L-1. The selectivity, linearity and precision for superoxide dismutase, ascorbic acid, and glutathione are presented and discussed. The results compared well with other standard methods for determination of superoxide dismutase, ascorbic acid and glutathione. Some possible steps in the overall reaction mechanisms are discussed.
Resumo:
Genetic diversity among four clones (A, D, E, F) of gynogenetic silver crucian carp was studied using transferrin and isozymes in the blood as markers. Of the five proteins investigated, three (transferrin, esterase and superoxide dismutase) indicated polymorphism and eight polymorphic loci were detected. These loci were probably encoded by codominant alleles and their inheritance patterns were analyzed. Intraclonal homogeneity and interclonal heterogeneity were observed in these clones, which allowed us to infer the clonal nature and evolutionary relationship between them. Clonal diversity in this population of silver crucian carp in China was also compared with data reported from gynogenetic crucian carp in Germany.
Resumo:
The cyanobacterium Nostoc commune Vaucher produces quite complex extracellular polysaccharides. The cyanobacterium is nitrogen fixing, and on growing the cyanobacterium in media with and without nitrogen, different types of extracellular polysaccharides were obtained. These were also different from the polysaccharides present in N. commune collected in the field. High pH anion exchange chromatography (HPAEC) of weak acid hydrolysates of the culture-grown material demonstrated that, in this case, HPAEC was useful for comparison of the different polymers. The main differences between the polymers from the field group and the culture-grown samples were the presence of substantial amounts of arabinose, 2-O-methylglucose, and glucuronic acid in the latter. Methylation studies also revealed a difference in the branching points on the glucose units between the field and cultured samples, being 1,4,6 for the first and 1,3,6 for the latter. The field acidic fraction gave, on weak acid hydrolysis and separation on BioGel P2 and HPAEC, 12 oligosaccharide fractions that were isolated and studied by different mass spectroscopy techniques. The structures of the oligosaccharides were determined, and two different series that can originate from two repeating pentamers were identified: GlcAl-4/6GlcM1-4Ga11-4Glc1-4Xyl and GlcAl-4/6Glc1-4Ga11-4Glc1-4Xyl. The difference between these oligosaccharides lies in the methyl substituent on carbon 2 of the glucose unit next to the nonreducing glucuronic acid unit. The polysaccharides from field material were shown to have a strong effect on the complement system.
Resumo:
Hot water-soluble polysaccharides woe extracted from field colonies and suspension cultures of Nostoc commune Vaucher, Nostoc flagelliforme Berkeley et Curtis, and Nostoc sphaeroides Kutzing. Excreted extracellular polymeric substances (EPS) were isolated from the media in which the suspension cultures were grown. The main monosaccharides of the field colony polysaccharides from the three species were glucose, xylose, and galactose, with an approximate ratio of 2:1:1. Mannose was also present, but the levels varied among the species, and arabinose appeared only in N. flagelliforme. The compositions of the cellular polysaccharides and EPS from suspension cultures were more complicated than those of the field samples and varied among the different species. The polysaccharides from the cultures of N. flagelliforme had a relatively simple composition consisting of mannose, galactose, glucose, and glucuronic acid, but no xylose, as was found in the field colony polysaccharides. The polysaccharides from cultures of N. sphaeroides contained glucose (the major component), rhamnose, fucose, xylose, mannose, and galactose. These same sugars were present in the polysaccharides from cultures of N. commune, with xylose as the major component. Combined nitrogen in the media had no qualitative influence on the compositions of the cellular polysaccharides but affected those of the EPS of N. commune and N. flagelliforme. The EPS of N. sphaeroides had a very low fetal carbohydrate content and thus was not considered to be polysaccharide in nature. The field colony polysaccharides could be separated by anion exchange chromatography into neutral and acidic fractions having similar sugar compositions. Preliminary linkage analysis showed that 1) xylose, glucose, and galactose were 1-->4 linked, 2) mannose, galactose, and xylose occurred as terminal residues, and 3) branch points occurred in glucose as 1-->3,4 and 1-->3,6 linkages and in xylose as a 1-->3,4 linkage. The polymer preparations from field colonies had higher kinematic viscosities than those from corresponding suspension cultures. The high viscosities of the polymers suggested that they might DE suitable for industrial uses.
Resumo:
Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N-2 molecular will appear in the GaN nanowire, which agrees well with experimental findings.