963 resultados para stromal derived growth factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Placenta growth factor (PlGF) deficient mice are fertile at a Mendelian ratio. Interestingly, low maternal plasma levels of PlGF are strongly associated with early onset of preeclampsia, a pregnancy hypertensive disorder characterised by high blood pressure, proteinuria and fetal growth restriction. PlGF is increasingly being recognised as an early diagnostic biomarker, but the physiological importance of PlGF in the pathogenesis of preeclampsia is unknown. We investigated whether the decreased levels of PlGF in pregnancy exacerbate the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1 and the potential of hydrogen sulphide to ameliorate these effects. Pregnant PlGF−/− mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at 1 × 109 pfu/ml at E10.5 and mean arterial blood pressure (MAP), biochemical and histological analysis of maternal kidney, placenta and embryos were assessed at the end of pregnancy. Ad-sFlt-1 significantly increased MAP and induced severe glomerular endotheliosis in PlGF−/− mice compared to wild-type animals. Soluble Flt-1 also significantly elevated albumin–creatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury. Furthermore, sFlt-1 over expression increased fetal resorption rate in the PlGF−/− mice and promoted abnormal placental vascularisation. To determine whether placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/− placentas and embryos in dams and exposed to high sFlt-1 environment. These mothers showed reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF−/− mice. Furthermore, treatment with hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria observed in Ad-sFlt-1 treated pregnant PlGF−/− mice. Our study shows that placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 associated with preeclampsia and activation of the hydrogen sulphide pathway may rescue preeclampsia phenotypes even under low PlGF environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Low circulating levels of placenta growth factor (PlGF) is strongly associated with the onset of preeclampsia, a maternal hypertensive disorder characterized by high blood pressure and proteinuria after 20 weeks of gestation. Although, PlGF-deficient mice are born healthy and fertile at a Mendelian ratio, the physiological importance of PlGF in the pathogenesis of preeclampsia is unclear. We hypothesised that decreased levels of PlGF in pregnancy exacerbates the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1. METHODS: Pregnant PlGF-/- mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at high (i) 1.5x109 pfu/ml and low (ii) 0.5x109 pfu/ml doses. Mean arterial blood pressure (MBP), biochemical and histological assessments of maternal kidney, placenta and embryos were performed. RESULTS: Ad-sFlt-1 significantly increased MBP and induced severe glomerular endotheliosis in PlGF-/- mice at E10.5 gestation compared to wild-type animals. High sFlt-1 also significantly elevated albumincreatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury.At a high dose of sFlt-1, there was complete fetal resorption in the pregnant PlGF-/- mice, and even the lower dose of sFlt-1 induced severe fetal resorption and abnormal placental vascularization. Hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria in Ad-sFlt-1 treated pregnant PlGF-/- mice. To determine if placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/- placentas and embryos were generated in wild-time dams and exposed to high sFlt-1 environment. This resulted in reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF-/- mice. CONCLUSIONS: Placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 in preeclampsia and the hydrogen sulphide pathway may rescue preeclampsia phenotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cell : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Insulin-like Growth Factor 1 Receptor (IGF-1R) has an essential function in normal cell growth and in cancer progression. However, anti-IGF-1R therapies have mostly been withdrawn from clinical trials owing to a lack of efficacy and predictive biomarkers. IGF-1R activity and signalling in cancer cells is regulated by its C-terminal tail, and in particular, by a motif that encompasses tyrosines 1250 and 1251 flanked by serines 1248 and 1252 (1248- SFYYS-1252). Mutation of Y1250/1251 greatly reduces IGF-1-promoted cell migration, interaction with the scaffolding protein RACK1 in the context Integrin signalling, and IGF- 1R kinase activity. Here we investigated the phosphorylation of the SFYYS motif and characterise the conditions under which this motif may be phosphorylated under. As phosphorylated residues, the SFYYS motif may also serve to recruit interacting proteins to the IGF-1R. To this end we identified a novel IGF-1R interacting partner which requires phosphorylated residues in the SFYYS motif to interact with the IGF-1R. This interaction was found to be IGF-1-dependent, and required the scaffold protein RACK1. The interaction of this binding protein with the IGF-1R likely functions to promote maximal phosphorylation of Shc and ERK in IGF-1-stimulated cell migration, and may be important for IGF-1 signalling in cancer cells. Lastly, we have investigated possible kinases that may confer resistance or sensitivity to the IGF-1R kinase inhibitor BMS-754807. In this screen we identified ATR as a mediator of resistance and showed that suppression or chemical inhibition of ATR synergised with BMS-754807 to reduce colony formation. This work has contributes to our understanding of IGF-1R kinase regulation and signalling and suggests that administration of anti-IGF-1R drugs with ATR inhibitors may have therapeutic benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin-like Growth Factor-1 (IGF-1) signalling promotes cell growth and is associated with cancer progression, including metastasis, epithelial-mesenchymal transition (EMT), and resistance to therapy. Mitochondria play an essential role in cancer cell metabolism and accumulating evidence demonstrates that dysfunctional mitochondria associated with release of mitochondrial reactive oxygen species (ROS) can influence cancer cell phenotype and invasive potential. We previously isolated a mitochondrial UTP carrier (PNC1/SLC25A33) whose expression is regulated by IGF-1, and which is essential for mitochondrial maintenance. PNC1 suppression in cancer cells results in mitochondrial dysfunction and acquisition of a profound ROS-dependent invasive (EMT) phenotype. Moreover, over-expression of PNC1 in cancer cells that exhibit an EMT phenotype is sufficient to suppress mitochondrial ROS production and reverse the invasive phenotype. This led us to investigate the IGF-1-mitochondrial signalling axis in cancer cells. We found that IGF-1 signalling supports increased mitochondrial mass and Oxphos potential through a PI3K dependant pathway. Acute inhibition of IGF-1R activity with a tyrosine kinase inhibitor results in dysfunctional mitochondria and cell death. We also observed an adaptive response to IGF-1R inhibition upon prolonged exposure to the kinase inhibitor, where increased expression of the EGF receptor can compensate for loss of mitochondrial mass through activation of PI3K/mTOR signalling. However, these cells exhibit impaired mitochondrial biogenesis and mitophagy. We conclude that the IGF-1 is required for mitochondrial maintenance and biogenesis in cancer cells, and that pharmacological inhibition of this pathway may induce mitochondrial dysfunction and may render the cells more sensitive to glycolysis-targeted drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Mechanisms underlying the effect of estrogen exposure on breast cancer risk remain unclear. Insulin-like growth factor-1 (IGF-1) levels have been positively associated with breast cancer and are a potential mechanism. Objectives: The objectives of this thesis are: 1) to explore whether the reproductive risk factors and the lifetime cumulative number of menstrual cycles (LCMC), as measures for long-term estrogen exposure, are associated with IGF-1 levels, and 2) to examine the effect of an aromatase inhibitor (AI) on IGF-1 levels, and the potential interaction with BMI. Methods: A cross sectional study and a randomized controlled trial nested with the MAP.3 chemoprevention trial were used to address objective 1 and 2, respectively. 567 postmenopausal women were selected. Anthropometric measurements, lifestyle factors, reproductive characteristics and serum IGF-1 concentrations were collected at baseline and one year. Objective 1. The LCMC was computed as a composite measure of the reproductive characteristics. Multivariable linear regression models were used to assess the association between IGF-1 levels and LCMC and the hormonal risk factors, while adjusting for potential covariates. Objective 2. Changes in IGF-1 were compared between the exemestane and placebo, and effect modification by BMI was tested with an interaction term. Results: Objective 1. Women aged 55 years or older at menopause had 16.26 ng/mL (95% CI: 1.76, 30.75) higher IGF-1 compared to women aged less than 50 years at menopause. Women in the highest category of menstrual cycles (≥500 cycles) had an average 19.00 ng/mL (95%CI: 5.86, 32.14) higher concentration of IGF-1 compared to women in the lowest category (<350). Exogenous hormones had no effect on postmenopausal IGF-1 levels. Objective 2. Exemestane significantly increased IGF-1 levels by 18% (95% CI: 14%-22%); while, placebo had no effect on IGF-1. The changes in IGF-1 were significantly different between the treatment arms (P<0.0001) and no significant interaction was observed between treatment and BMI on IGF-1 changes (P=0.1327). Conclusion: Objective 1. Larger number of menstrual cycles and a later age at menopause are positively associated with IGF-1. IGF-1 may be one mechanism by which prolonged estrogen exposure increases cancer risk. Objective 2. We conclude that the reduced cancer risk observed with AI therapy likely occurs in an IGF-1 independent mechanism. Further studies exploring the clinical consequences of increased IGF-1 on AI therapy are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the impact of extracellular matrix sub-types and mechanical stretch on cardiac fibroblast activity is required to help unravel the pathophysiology of myocardial fibrotic diseases. Therefore, the purpose of this study was to investigate pro-fibrotic responses of primary human cardiac fibroblast cells exposed to different extracellular matrix components, including collagen sub-types I, III, IV, VI and laminin. The impact of mechanical cyclical stretch and treatment with transforming growth factor beta 1 (TGFβ1) on collagen 1, collagen 3 and alpha smooth muscle actin mRNA expression on different matrices was assessed using quantitative real-time PCR. Our results revealed that all of the matrices studied not only affected the expression of pro-fibrotic genes in primary human cardiac fibroblast cells at rest but also affected their response to TGFβ1. In addition, differential cellular responses to mechanical cyclical stretch were observed depending on the type of matrix the cells were adhered to. These findings may give insight into the impact of selective pathological deposition of extracellular matrix proteins within different disease states and how these could impact the fibrotic environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Mechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts' response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.

METHODS AND RESULTS: The effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.

CONCLUSION: We postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In gastric cancer (GC), the main subtypes (diffuse and intestinal types) differ in pathological characteristics, with diffuse GC exhibiting early disseminative and invasive behaviour. A distinctive feature of diffuse GC is loss of intercellular adhesion. Although widely attributed to mutations in the CDH1 gene encoding E-cadherin, a significant percentage of diffuse GC do not harbor CDH1 mutations. We found that the expression of the actin-modulating cytoskeletal protein, gelsolin, is significantly higher in diffuse-type compared to intestinal-type GCs, using immunohistochemical and microarray analysis. Furthermore, in GCs with wild-type CDH1, gelsolin expression correlated inversely with CDH1 gene expression. Downregulating gelsolin using siRNA in GC cells enhanced intercellular adhesion and E-cadherin expression, and reduced invasive capacity. Interestingly, hepatocyte growth factor (HGF) induced increased gelsolin expression, and gelsolin was essential for HGF-medicated cell scattering and E-cadherin transcriptional repression through Snail, Twist and Zeb2. The HGF-dependent effect on E-cadherin was found to be mediated by interactions between gelsolin and PI3K-Akt signaling. This study reveals for the first time a function of gelsolin in the HGF/cMet oncogenic pathway, which leads to E-cadherin repression and cell scattering in gastric cancer. Our study highlights gelsolin as an important pro-disseminative factor contributing to the aggressive phenotype of diffuse GC.