996 resultados para stability zone
Resumo:
This paper applies Micken's discretization method to obtain a discrete-time SEIR epidemic model. The positivity of the model along with the existence and stability of equilibrium points is discussed for the discrete-time case. Afterwards, the design of a state observer for this discrete-time SEIR epidemic model is tackled. The analysis of the model along with the observer design is faced in an implicit way instead of obtaining first an explicit formulation of the system which is the novelty of the presented approach. Moreover, some sufficient conditions to ensure the asymptotic stability of the observer are provided in terms of a matrix inequality that can be cast in the form of a LMI. The feasibility of the matrix inequality is proved, while some simulation examples show the operation and usefulness of the observer.
Resumo:
The length-weight relationship (LWR) parameters of 23 small pelagic fish species (belonging to 13 families) from the south-southeast Brazilian Exclusive Economic Zone in 1996 and 1997 are presented. The b values varied between 2.72 and 3.53. The samples for this study were collected during hydroacoustic surveys covering an area of 700 000 square km.
Resumo:
Economic analysis of the trawl fishery of Brunei Darussalam was conducted using cost and returns analysis and based on an economic survey of trawlers and B:RUN, a low-level geographic information system. Profitability indicators were generated for the trawl fleet under various economic and operational scenarios. The results show that financial profits are earned by trawlers which operate off Muara, particularly those with high vessel capacity, and that these profits could be further enhanced. On the other hand, a similar fleet operating off Tutong would generate profits due mainly to high fish biomass. Trawling operations offshore are deemed financially unfeasible. Incorporating realistic opportunity costs and externalities for existing trawl operations off Muara results in economic losses.
Resumo:
B:RUN is a low-level GIS software designed to help formulate options for the management of the coastal zone of Brunei Darussalam. This contribution presents the oil spill simulation module of B:RUN. This simple module, based largely on wind and sea surface current vector parameters, may be helpful in formulating relevant oil spill contingency plans. It can be easily adapted to other areas, as can the B:RUN software itself.
Resumo:
This paper relies on the concept of next generation matrix defined ad hoc for a new proposed extended SEIR model referred to as SI(n)R-model to study its stability. The model includes n successive stages of infectious subpopulations, each one acting at the exposed subpopulation of the next infectious stage in a cascade global disposal where each infectious population acts as the exposed subpopulation of the next infectious stage. The model also has internal delays which characterize the time intervals of the coupling of the susceptible dynamics with the infectious populations of the various cascade infectious stages. Since the susceptible subpopulation is common, and then unique, to all the infectious stages, its coupled dynamic action on each of those stages is modeled with an increasing delay as the infectious stage index increases from 1 to n. The physical interpretation of the model is that the dynamics of the disease exhibits different stages in which the infectivity and the mortality rates vary as the individual numbers go through the process of recovery, each stage with a characteristic average time.
Resumo:
This contribution is the first part of a four-part series documenting the development of B:RUN, a software program which reads data for common spreadsheets and presents them as low-resolution maps of slates and processes. The program emerged from a need which arose during a project in Brunei Darussalam for a 'low level' approach for researchers to communicate findings as efficiently and expeditiously as possible. Part I provides a overview of the concept and design elements of B:RUN. Part II will highlight results of the economics components of the program evaluating different fishing regimes, sailing distances from ports and fleet operating costs. Environmental aspects will be presented in Part III in the form of overlay maps. Part IV will summarize the implications of B:RUN results to coastal and fishery resources management in Brunei Darussalam and show how this approach can be adapted to other coastlines and used as a teaching and training tool. The following three parts will be published in future editions of Naga, the ICLARM Quarterly. The program is available through ICLARM.
Resumo:
The article highlights briefly the economics of different types of fishing units operating along the Indian coast; analyzes the exploitation trend of major marine fishery resources in relation to its potential yield; and suggests policy measures for optimum exploitation of resources, conservation and management.