956 resultados para spectral sensitivity
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)
Resumo:
A method for linearly constrained optimization which modifies and generalizes recent box-constraint optimization algorithms is introduced. The new algorithm is based on a relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected steps, internal iterations restricted to faces of the polytope are performed, which enhance the efficiency of the algorithm. Convergence proofs are given and numerical experiments are included and commented. Software supporting this paper is available through the Tango Project web page: http://www.ime.usp.br/similar to egbirgin/tango/.
Resumo:
Submicron atmospheric particles in the Amazon Basin were characterized by a high-resolution aerosol mass spectrometer during the wet season of 2008. Patterns in the mass spectra closely resembled those of secondary-organic-aerosol (SOA) particles formed in environmental chambers from biogenic precursor gases. In contrast, mass spectral indicators of primary biological aerosol particles (PBAPs) were insignificant, suggesting that PBAPs contributed negligibly to the submicron fraction of particles during the period of study. For 40% of the measurement periods, the mass spectra indicate that in-Basin biogenic SOA production was the dominant source of the submicron mass fraction, contrasted to other periods (30%) during which out-of-Basin organic-carbon sources were significant on top of the baseline in-Basin processes. The in-Basin periods had an average organic-particle loading of 0.6 mu g m(-3) and an average elemental oxygen-to-carbon (O:C) ratio of 0.42, compared to 0.9 mu g m(-3) and 0.49, respectively, during periods of out-of-Basin influence. On the basis of the data, we conclude that most of the organic material composing submicron particles over the Basin derived from biogenic SOA production, a finding that is consistent with microscopy observations made in a concurrent study. This source was augmented during some periods by aged organic material delivered by long-range transport. Citation: Chen, Q., et al. (2009), Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin, Geophys. Res. Lett., 36, L20806, doi: 10.1029/2009GL039880.
Resumo:
The aerosol spectral absorption efficiency (alpha(a) in m(2)/g) is measured over an extended wavelength range (350-2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha(a) values (similar to 3m(2)/g at 550 nm) for Sao Paulo samples are 10 times larger than a a values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space. Citation: Martins, J.V., P. Artaxo, Y.J. Kaufman, A.D. Castanho, and L.A. Remer (2009), Spectral absorption properties of aerosol particles from 350-2500nm, Geophys. Res. Lett., 36, L13810, doi: 10.1029/2009GL037435.
Resumo:
The progression to end-stage renal failure is independent of the initial pathogenic mechanism. Metabolic acidosis is a common consequence of chronic renal failure that results from inadequate ammonium excretion and decreased tubular bicarbonate reabsorption. Protoporphyrin IX (PpIX) is the immediate metabolic precursor of the heme molecule. The purpose of this study was to evaluate the levels of erythrocytes protoporphyrin IX at an animal model during progressive renal disease. A total of 36 eight-week-old male Wistar rats were divided into six groups: Normal, 4 and 8 weeks after 5/6 nephrectomy (NX). Renal function was evaluated by creatinine clearance and plasma creatinine levels. The autofluorescence of erythrocytes porphyrin of healthy and NX rats was analyzed using fluorescence spectroscopy. Emission spectra were obtained by exciting the samples at 405 nm. Significant differences between normal and NX rats autofluorescence shape occurred in the 600-700 nm spectral region. A correlation was observed between emission band intensity at 635 nm and progression of renal disease.
Resumo:
Monte Carlo simulation and quantum mechanics calculations based on the INDO/CIS and TD-DFT methods were utilized to study the solvatochromic shift of benzophenone when changing the environment from normal water to supercritical (P = 340.2 atm and T = 673 K) condition. Solute polarization increases the dipole moment of benzophenone, compared to gas phase, by 88 and 35% in normal and supercritical conditions, giving the in-solvent dipole value of 5.8 and 4.2 D, respectively. The average number of solute-solvent hydrogen bonds was analyzed, and a large decrease of 2.3 in normal water to only 0.8 in the supercritical environment was found. By using these polarized models of benzophenone in the two different conditions of water, we performed MC simulations to generate statistically uncorrelated configurations of the solute surrounded by the solvent molecules and subsequent quantum mechanics calculations on these configurations. When changing from normal to supercritical water environment, INDO/CIS calculations explicitly considering all valence electrons of the 235 solvent water molecules resulted in a solvatochromic shift of 1425 cm(-1) for the most intense transition of benzophenone, that is, slightly underestimated in comparison with the experimentally inferred result of 1700 cm(-1). TD-B3LYP/6-311+G(2d,p) calculations on the same configurations but with benzophenone electrostatically embedded in the 320 water molecules resulted in a solvatochromic shift of 1715 cm(-1) for this transition, in very good agreement with the experimental result. When using the unpolarized model of the benzophenone, this calculated solvatochromic shift was only 640 cm(-1). Additional calculations were also made by using BHandHLYP/6-311+G(2d,p) to analyze the effect of the asymptotic decay of the exchange functional. This study indicates that, contrary to the general expectation, there is a sizable solute polarization even in the low-density regime of supercritical condition and that the inclusion of this polarization is important for a reliable description of the spectral shifts considered here.
Resumo:
The eigenvalue densities of two random matrix ensembles, the Wigner Gaussian matrices and the Wishart covariant matrices, are decomposed in the contributions of each individual eigenvalue distribution. It is shown that the fluctuations of all eigenvalues, for medium matrix sizes, are described with a good precision by nearly normal distributions.
Resumo:
In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential alpha x(-2). Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some `paradoxes` inherent in the `naive` quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.
Resumo:
We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x) = g(1)x(-1) + g(2)x(-2), x is an element of R(+) = [0, infinity). For g(2) > 0 and g(1) < 0, the potential is known as the Kratzer potential V(K)(x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schrodinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein`s method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.
Resumo:
Complex networks obtained from real-world networks are often characterized by incompleteness and noise, consequences of imperfect sampling as well as artifacts in the acquisition process. Because the characterization, analysis and modeling of complex systems underlain by complex networks are critically affected by the quality and completeness of the respective initial structures, it becomes imperative to devise methodologies for identifying and quantifying the effects of the sampling on the network structure. One way to evaluate these effects is through an analysis of the sensitivity of complex network measurements to perturbations in the topology of the network. In this paper, measurement sensibility is quantified in terms of the relative entropy of the respective distributions. Three particularly important kinds of progressive perturbations to the network are considered, namely, edge suppression, addition and rewiring. The measurements allowing the best balance of stability (smaller sensitivity to perturbations) and discriminability (separation between different network topologies) are identified with respect to each type of perturbation. Such an analysis includes eight different measurements applied on six different complex networks models and three real-world networks. This approach allows one to choose the appropriate measurements in order to obtain accurate results for networks where sampling bias cannot be avoided-a very frequent situation in research on complex networks.
Resumo:
This work investigates the two-photon absorption spectrum of perylene tetracarboxylic derivatives using the white-light continuum Z-scan technique. Perylene derivatives present relatively high two-photon absorption cross-section, which makes them attractive for applications in photonics. Because of the spectral resolution of the white-light continuum Z-scan, we were able to observe a well defined structure in the two-photon absorption spectrum, composed by two distinct peaks. These peaks, as well as the resonant enhancement of the nonlinearity, were modeled using the sum-over-states approach considering a four-level energy diagram with two final two-photon states. The existence of such states was confirmed using the response function formalism within the DFT framework. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we investigate the control of the two-photon absorption process of a series of organic compounds via spectral phase modulation of the excitation pulse. We analyzed the effect of the pulse central wavelength on the control of the two-photon absorption process for each compound. Depending on the molecules` two-photon absorption position relative to the excitation pulse wavelength, different levels of coherent control were observed. By simulating the two-photon transition probability in molecular systems, taking into account the band structure and its positions, we could explain the experimental results trends. We observed that the intrapulse coherent interference plays an important role in the nonlinear process control besides just the pulse intensity modulation.
Resumo:
The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.
Resumo:
We present a site-resolved study of stow (ms to s) motions in a protein in the solid (microcrystalline) state performed with the use of a modified version of the centerband-only detection of exchange (CODEX) NMR experiment. CODEX was originally based on measuring changes in molecular orientation by means of the chemical shift anisotropy (CSA) tensor, and in our modification, angular reorientations of internuclear vectors are observed. The experiment was applied to the study of stow (15)N-(1)H motions of the SH3 domain of chicken a-spectrin. The protein was perdeuterated with partial back-exchange of protons at labile sites. This allowed indirect (proton) detection of (15)N nuclei and thus a significant enhancement of sensitivity. The diluted proton system also made negligible proton-driven spin diffusion between (15)N nuclei, which interferes with the molecular exchange (motion) and hampers the acquisition of dynamic parameters. The experiment has shown that approximately half of the peaks in the 2D (15)N-(1)H correlation spectrum exhibit exchange in a different extent. The correlation time of the slow motion for most peaks is 1 to 3 s. This is the first NMR study of the internal dynamics of proteins in the solid state on the millisecond to second time scale with site-specific spectral resolution that provides both time-scale and geometry information about molecular motions.
Resumo:
The thermoluminescence (TL) characteristics of quartz are highly dependent of its thermal history. Based on the enhancement of quartz luminescence occurred after heating, some authors proposed to use quartz TL to recover thermal events that affected quartz crystals. However, little is know about the influence of the temperature of quartz crystallization on its TL characteristics. In the present study, we evaluate the TL sensitivity and dose response curves of hydrothermal and metamorphic quartz with crystallization temperatures from 209 +/- 15 to 633 +/- 27 degrees C determined through fluid inclusion and mineral chemistry analysis. The studied crystals present a cooling thermal history, which allow the acquiring of their natural TL without influence of heating after crystallization. The TL curves of the studied samples present two main components formed by different peaks overlapped around 110 C and 200-400 degrees C. The TL sensitivity in the 200-400 degrees C region increases linearly with the temperature of quartz crystallization. No relationship was observed between temperatures of quartz crystallization and saturation doses (<100 Gy). The elevated TL sensitivity of the high temperature quartz is attributed to the control exerted by the temperature of crystallization on the substitution of Si(4+) by ions such as Al(3+) and Ti(4+), which produce defects responsible for luminescence phenomena. The linear relationship observed between TL in the 200-400 degrees C region and crystallization temperature has potential use as a quartz geothermometer. The relative abundance of quartz in the earth crust and the easiness to measure TL are advantageous in relation to geothermometry methods based on chemistry of other minerals. (C) 2010 Elsevier Ltd. All rights reserved.