975 resultados para solubility constant K-H
Resumo:
Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 x 10(5) Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3-2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult's law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) --> MnRh2O4 (sp), DELTAG-degrees = -49,680 + 1.56T (+/-500) J mol-1. The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte. From these results, an oxygen potential diagram for the ternary system is developed.
Resumo:
Zirconia-based solid electrolytes with zircon (ZrSiO4) as the auxiliary electrode have been suggested of sensing silicon concentrations in iron and steel melts. A knowledge of phase relations in the ternary system MO-SiO2-ZrO2 (M = Ca, Mg) is useful for selecting an appropriate auxiliary electrode. In this investigation, an isothermal section for the phase diagram of the system CaO-SiO2ZrO2 at 1573 K has been established by equilibrating mixtures of component oxides in air, followed by quenching and phase identification by optical miroscopy, energy disperse analysis of X-rays (EDAX) and X-ray diffraction analysis (XRD). The equilibrium phase relations have also been confirmed by computation using the available thermodynamic data on condensed phases in the system. The results indicate that zircon is not in thermodynamic equilibrium with calcia-stabilized zirconia or calcium zirconate. The silica containing phase in equilibrium with stabilized zirconia is Ca3ZrSi2O9. Calcium zirconate can coexist with Ca3ZrSi2O9 and Ca2SiO4.
Resumo:
This article addresses uncertainty effect on the health monitoring of a smart structure using control gain shifts as damage indicators. A finite element model of the smart composite plate with surface-bonded piezoelectric sensors and actuators is formulated using first-order shear deformation theory and a matrix crack model is integrated into the finite element model. A constant gain velocity/position feedback control algorithm is used to provide active damping to the structure. Numerical results show that the response of the structure is changed due to matrix cracks and this change can be compensated by actively tuning the feedback controller. This change in control gain can be used as a damage indicator for structural health monitoring. Monte Carlo simulation is conducted to study the effect of material uncertainty on the damage indicator by considering composite material properties and piezoelectric coefficients as independent random variables. It is found that the change in position feedback control gain is a robust damage indicator.
Resumo:
The reaction between Fe foil and a disc of ilmenite solid solution (Co-0.48 Ni-0.52) TiO3 was studied at 1273 K. At the metal/oxide interface, the displacement reaction, Fe + (Co,Mg)TiO3 = Co + (Fe,Mg)TiO3 occurs, resulting in an ilmenite solid solution containing three divalent cations. Ferrous ions diffuse into the oxide solid solution and cause the precipitation of Co-Fe alloy as discrete particles inside the oxide matrix. The morphology of the product layer was characterized by SEM. Only two phases, alloy and ilmenite, were detected in the reaction zone. This suggests that the local flux condition imposed by ilmenite stoichiometry (Co + Fe + Mg):Ti = 1:1] was satisfied during the reactive diffusion: (J(Co) + J(Fe) + J(Mg)) = J(Ti). The composition of the alloy and the oxide was determined using EPMA as a function of distance in the direction of diffusion. Although Mg does not participate in the displacement reaction, its composition in the ilmenite phase was found to be position dependent inside the reaction zone. The up-hill diffusion of inert Mg is caused by the development of chemical potential gradients as a result of displacement reaction. The evolution of composition gradients inside the reaction zone and the diffusion path in a ternary composition diagram of the system CoTiO3-FeTiO3-MgTiO3 are discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Transparent glasses in the system 0.5Li(2)O-0.5M(2)O-2B(2)O(3) (M = Li, Na and K) were fabricated via the conventional melt quenching technique. The amorphous and glassy nature of the samples was confirmed via the X-ray powder diffraction and the differential scanning calorimetry, respectively. The frequency and temperature dependent characteristics of the dielectric relaxation and the electrical conductivity were investigated in the 100 Hz-10 MHz frequency range. The imaginary part of the electric modulus spectra was modeled using an approximate solution of Kohrausch-Williams-Watts relation. The stretching exponent, (3, was found to be temperature independent for 0.5Li(2)O-0.5Na(2)O-2B(2)O(3) (LNBO) glasses. The activation energy associated with DC conduction was found to be higher (1.25 eV) for 0.5Li(2)O-0.5K(2)O-2B(2)O(3) (LKBO) glasses than that of the other glass systems under study. This is attributed to the mixed cation effect. (C) 2011 Elsevier By. All rights reserved.
Resumo:
An (alpha, beta)-spanner of an unweighted graph G is a subgraph H that distorts distances in G up to a multiplicative factor of a and an additive term beta. It is well known that any graph contains a (multiplicative) (2k - 1, 0)-spanner of size O(n(1+1/k)) and an (additive) (1, 2)-spanner of size O(n(3/2)). However no other additive spanners are known to exist. In this article we develop a couple of new techniques for constructing (alpha, beta)-spanners. Our first result is an additive (1, 6)-spanner of size O(n(4/3)). The construction algorithm can be understood as an economical agent that assigns costs and values to paths in the graph, purchasing affordable paths and ignoring expensive ones, which are intuitively well approximated by paths already purchased. We show that this path buying algorithm can be parameterized in different ways to yield other sparseness-distortion tradeoffs. Our second result addresses the problem of which (alpha, beta)-spanners can be computed efficiently, ideally in linear time. We show that, for any k, a (k, k - 1)-spanner with size O(kn(1+1/k)) can be found in linear time, and, further, that in a distributed network the algorithm terminates in a constant number of rounds. Previous spanner constructions with similar performance had roughly twice the multiplicative distortion.
Resumo:
The entry of the plant toxin ricin and its A- and B-subunits in model membranes in the presence as well as absence of monosialoganglioside (GM(1)) has been studied. Dioleoylphosphatidylcholine and 5-, 10-, and 12-doxyl- or 9,10-dibromophosphatidylcholines serve as quenchers of intrinsic tryptophan fluorescence of the proteins. The parallax method of Chattopadhyay and London [(1987) Biochemistry 26, 39-45] has been employed to measure the average membrane penetration depth of tryptophans of ricin and its B-chain and the actual depth of the sole Trp 211 in the A-chain. The results indicate that both of the chains as well as intact ricin penetrate the membrane deeply and the C-terminal end of the A-chain is well inside the bilayer, especially at pH 4.5. An extrinsic probe N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl) ethylenediamine (I-AEDANS) has been attached to Cys 259 of the A-chain, and the kinetics of penetration has been followed by monitoring the increase in AEDANS fluorescence at 480 nm. The insertion follows first-order kinetics, and the rate constant is higher at a lower pH. The energy transfer distance analysis between Trp 211 and AEDANS points out that the conformation of the A-chain changes as it inserts into the membrane. CD studies indicate that the helicity of the proteins increases after penetration, which implies that some of the unordered structure in the native protein is converted to the ordered form during this process. Hydrophobic forces seem to be responsible for stabilizing a particular protein conformation inside the membrane.
Resumo:
The effect of fourteen minor elements (Al, As, B, Bi, C, Ga, Ge, In, N, P, Pb, S, Sb and Sn) on the solubility of oxygen in silicon melt has been estimated using a recently developed theoretical equation, with only fundamental physical parameters such as hard sphere diameter, atomic volume and molar heat of solution at infinite dilution as inputs. The results are expressed in the form of interaction parameters. Although only limited experimental data are available for comparison, the theoretical approach appears to predict the correct sign, but underestimates the magnitude of the interaction between oxygen and alloying elements. The present theoretical approach is useful in making qualitative predications on the effect of minor elements on the solubility of oxygen in silicon melt, when direct measurements are not available.
Resumo:
Thermal expansion of irradiated nylon-6 has been studied in the temperature range 10 to 340 K using a three-terminal capacitance bridge technique. Irradiation is carried out using cobalt-60 gamma-rays up to 500 Mrad dosage. Radiation enhances chain scission over crosslinking. alpha increases from 0 to 250 Mrad between 10 to 340 K and not much variation is observed between 250 to 500 Mrad for samples from 10 to 250 K.
Resumo:
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic beta-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was < 20 nA cm(-2) at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole-Frenkel. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The problem addressed is one of model reference adaptive control (MRAC) of asymptotically stable plants of unknown order with zeros located anywhere in the s-plane except at the origin. The reference model is also asymptotically stable and lacking zero(s) at s = 0. The control law is to be specified only in terms of the inputs to and outputs of the plant and the reference model. For inputs from a class of functions that approach a non-zero constant, the problem is formulated in an optimal control framework. By successive refinements of the sub-optimal laws proposed here, two schemes are finally design-ed. These schemes are characterized by boundedness, convergence and optimality. Simplicity and total time-domain implementation are the additional striking features. Simulations to demonstrate the efficacy of the control schemes are presented.
Resumo:
The Ca2+-activated K+ channel in endocrine cells is responsible for membrane hyperpolarization and rhythmic firing of action potentials. The probability of opening of this channel is sensitive to intracellular-free Ca2+ concentration. In this study we have identified one such large conductance Ca2+-activated K+ channel in alpha T3-1 pituitary gonadotroph cell. This channel is ohmic with a unit conductance of 170 pS in symmetrical KCl (135 mM) and its current reverses near zero millivolts. When more than one channel is present in the patch membrane they open and close independent of each other, exhibiting no cooperativity between them as expected of a binomial distribution. The regulatory mechanism of this channel in modulating hormone secretion from alpha T3-1 gonadotroph cells is indicated.
Resumo:
Anion-deficient perovskite oxides of the formula AM(1-x)Al(x)O(3-x) (A = Na or K; M = Nb or Ta) have been prepared for 0 < x less than or equal to 0.5. Diffraction experiments reveal that while the potassium compounds adopt orthorhombic/cubic perovskite structures similar to the parent KNbO3/KTaO3, the sodium compound, NaNb0.5Al0.5O2.5, possesses a brownmillerite/LaSr-CuAlO5-like superstructure. Al-27 NMR spectra show an exclusive tetrahedral oxygen coordination for AI(III) in Na-Nb0.5Al0.5O2.5 (I) and both tetrahedral and octahedral coordination for Al(III) in KNb0.5Al0.5O2.5 (II). The results suggest a long-range and short-range ordering of oxide ion vacancies in I and II respectively. Electrical conductivity measurements show a significant oxide ion conduction for KNb1-xAlxO3-x, with the conductivity increasing with x up to x = 0.5. The differences in the Arrhenius plots of the ionic conductivity of I and II have been rationalized in terms of the long-range and short-range ordering of oxide ion vacancies in the anion-deficient perovskite oxides.
Resumo:
Isoactivity lines for carbon with respect to diamond as the standard state have been calculated in the ternary system C-H-O at 1223 K to identify the diamond deposition domain. The gas composition is calculated by suppressing the formation of all condensed forms of carbon using the SOLGASMIX free-energy minimization program. Thirty six gas species were included in the calculation. From the gas composition, isoactivity lines are computed using recent data on the Gibbs energy of diamond. Except for activities less than 0.1, the isoactivity lines are almost linear on the C-H-O ternary diagram. Gas compositions which generate activity of diamond ranging from 1 to 100 at 1223 K fall inside a narrow wedge originating from the point representing CO. This wedge is very similar to the revised lens-shaped diamond growth domain identified by Bachman et al., using inputs from experiment. The small difference between the calculated and observed domains may be attributed to variation in the supersaturation required for diamond deposition with gas composition. The diamond solubility in the gas phase along the isoactivity line for a(di)=100 and P=6.7 kPa exhibits a minimum at 1280 K, which is close to the optimum temperature found experimentally. At higher supersaturations, non-diamond forms of carbon, including amorphous varieties, are expected. The results suggest that thermodynamic calculations can be useful for locating diamond growth domains in more complex CVD systems containing halogens, for which very little experimental data is available.
Resumo:
We study the generation of coherent optical phonons in spin-frustrated pyrochlore single crystals Dy2Ti2O7, Gd2Ti2O7, and Tb2Ti2O7 using femtosecond laser pulses (65 fs, 1.57 eV) in degenerate time-resolved transmission experiments as a function of temperature from 4 to 296 K. At 4 K, two coherent phonons are observed at similar to 5.3 THz (5.0 THz) and similar to 9.3 THz (9.4 THz) for Dy2Ti2O7 (Gd2Ti2O7), whereas three coherent phonons are generated at similar to 5.0, 8.6, and 9.7 THz for Tb2Ti2O7. In the case of spin-ice Dy2Ti2O7, a clear discontinuity is observed in the linewidths of both the coherent phonons as well as in the phase of lower-energy coherent phonon mode, indicating a subtle structural change at 110 K. Another important observation is a phase difference of pi between the modes in all the samples, thus suggesting that the driving forces behind the generation of these modes could be different in nature, unlike a purely impulsive or displacive mechanism.