946 resultados para single-wave function
Resumo:
Small molecule-regulated transcription has broad utility and would benefit from an easily delivered self-contained regulatory cassette capable of robust, tightly controlled target gene expression. We describe the delivery of a modified dimerizer-regulated gene expression system to cells on a single retrovirus. A transcription factor cassette responsive to the natural product dimerizer rapamycin was optimized for retroviral delivery by fusing a highly potent chimeric activation domain to the rapamycin-binding domain of FKBP-rapamycin-associated protein (FRAP). This improvement led to an increase in both the potency and maximal levels of gene expression induced by rapamycin, or nonimmunosuppressive rapamycin analogs. The modified transcription factor cassette was incorporated along with a target gene into a single rapamycin-responsive retrovirus. Cell pools stably transduced with the single virus system displayed negligible basal expression and gave induction ratios of at least three orders of magnitude in the presence of rapamycin or a nonimmunosuppressive rapamycin analog. Levels of induced gene expression were comparable to those obtained with the constitutive retroviral long terminal repeat and the single virus system performed well in four different mammalian cell lines. Regulation with the dimerizer-responsive retrovirus was tight enough to allow the generation of cell lines displaying inducible expression of the highly toxic diphtheria toxin A chain gene. The ability to deliver the tightly inducible rapamycin system in a single retrovirus should facilitate its use in the study of gene function in a broad range of cell types.
Resumo:
Homologous recombination in Saccharomyces cerevisiae depends critically on RAD52 function. In vitro, Rad52 protein preferentially binds single-stranded DNA (ssDNA), mediates annealing of complementary ssDNA, and stimulates Rad51 protein-mediated DNA strand exchange. Replication protein A (RPA) is a ssDNA-binding protein that is also crucial to the recombination process. Herein we report that Rad52 protein effects the annealing of RPA–ssDNA complexes, complexes that are otherwise unable to anneal. The ability of Rad52 protein to promote annealing depends on both the type of ssDNA substrate and ssDNA binding protein. RPA allows, but slows, Rad52 protein-mediated annealing of oligonucleotides. In contrast, RPA is almost essential for annealing of longer plasmid-sized DNA but has little effect on the annealing of poly(dT) and poly(dA), which are relatively long DNA molecules free of secondary structure. These results suggest that one role of RPA in Rad52 protein-mediated annealing is the elimination of DNA secondary structure. However, neither Escherichia coli ssDNA binding protein nor human RPA can substitute in this reaction, indicating that RPA has a second role in this process, a role that requires specific RPA–Rad52 protein interactions. This idea is confirmed by the finding that RPA, which is complexed with nonhomologous ssDNA, inhibits annealing but the human RPA–ssDNA complex does not. Finally, we present a model for the early steps of the repair of double-strand DNA breaks in yeast.
Resumo:
A large library of phage-displayed human single-chain Fv antibodies (scFv), containing 6.7 × 109 members, was generated by improving the steps of library construction. Fourteen different protein antigens were used to affinity select antibodies from this library. A panel of specific antibodies was isolated with each antigen, and each panel contained an average of 8.7 different scFv. Measurements of antibody–antigen interactions revealed several affinities below 1 nM, comparable to affinities observed during the secondary murine immune response. In particular, four different scFv recognizing the ErbB2 protein had affinities ranging from 220 pM to 4 nM. Antibodies derived from the library proved to be useful reagents for immunoassays. For example, antibodies generated to the Chlamydia trachomatis elementary bodies stained Chlamydia-infected cells, but not uninfected cells. These results demonstrate that phage antibody libraries are ideally suited for the rapid production of panels of high-affinity mAbs to a wide variety of protein antigens. Such libraries should prove especially useful for generating reagents to study the function of gene products identified by genome projects.
Resumo:
The sequence of events that leads to tumor vessel regression and the functional characteristics of these vessels during hormone–ablation therapy are not known. This is because of the lack of an appropriate animal model and monitoring technology. By using in vivo microscopy and in situ molecular analysis of the androgen-dependent Shionogi carcinoma grown in severe combined immunodeficient mice, we show that castration of these mice leads to tumor regression and a concomitant decrease in vascular endothelial growth factor (VEGF) expression. Androgen withdrawal is known to induce apoptosis in Shionogi tumor cells. Surprisingly, tumor endothelial cells begin to undergo apoptosis before neoplastic cells, and rarefaction of tumor vessels precedes the decrease in tumor size. The regressing vessels begin to exhibit normal phenotype, i.e., lower diameter, tortuosity, vascular permeability, and leukocyte adhesion. Two weeks after castration, a second wave of angiogenesis and tumor growth begins with a concomitant increase in VEGF expression. Because human tumors often relapse following hormone–ablation therapy, our data suggest that these patients may benefit from combined anti-VEGF therapy.
Resumo:
Translesion replication (TR) past a cyclobutane pyrimidine dimer in Escherichia coli normally requires the UmuD′2C complex, RecA protein, and DNA polymerase III holoenzyme (pol III). However, we find that efficient TR can occur in the absence of the Umu proteins if the 3′–5′ exonuclease proofreading activity of the pol III ɛ-subunit also is disabled. TR was measured in isogenic uvrA6 ΔumuDC strains carrying the dominant negative dnaQ allele, mutD5, or ΔdnaQ spq-2 mutations by transfecting them with single-stranded M13-based vectors containing a specifically located cis-syn T–T dimer. As expected, little TR was observed in the ΔumuDC dnaQ+ strain. Surprisingly, 26% TR occurred in UV-irradiated ΔumuDC mutD5 cells, one-half the frequency found in a uvrA6 umuDC+mutD5 strain. lexA3 (Ind−) derivatives of the strains showed that this TR was contingent on two inducible functions, one LexA-dependent, responsible for ≈70% of the TR, and another LexA-independent, responsible for the remaining ≈30%. Curiously, the ΔumuDC ΔdnaQ spq-2 strain exhibited only the LexA-independent level of TR. The cause of this result appears to be the spq-2 allele, a dnaE mutation required for viability in ΔdnaQ strains, since introduction of spq-2 into the ΔumuDC mutD5 strain also reduces the frequency of TR to the LexA-independent level. The molecular mechanism responsible for the LexA-independent TR is unknown but may be related to the UVM phenomenon [Palejwala, V. A., Wang, G. E., Murphy, H. S. & Humayun, M. Z. (1995) J. Bacteriol. 177, 6041–6048]. LexA-dependent TR does not result from the induction of pol II, since TR in the ΔumuDC mutD5 strain is unchanged by introduction of a ΔpolB mutation.
Resumo:
The subclass Theria of Mammalia includes marsupials (infraclass Metatheria) and placentals (infraclass Eutheria). Within each group, interordinal relationships remain unclear. One limitation of many studies is incomplete ordinal representation. Here, we analyze DNA sequences for part of exon 1 of the interphotoreceptor retinoid binding protein gene, including 10 that are newly reported, for representatives of all therian orders. Among placentals, the most robust clades are Cetartiodactyla, Paenungulata, and an expanded African clade that includes paenungulates, tubulidentates, and macroscelideans. Anagalida, Archonta, Altungulata, Hyracoidea + Perissodactyla, Ungulata, and the “flying primate” hypothesis are rejected by statistical tests. Among marsupials, the most robust clade includes all orders except Didelphimorphia. The phylogenetic placement of the monito del monte and the marsupial mole remains unclear. However, the marsupial mole sequence contains three frameshift indels and numerous stop codons in all three reading frames. Given that the interphotoreceptor retinoid binding protein gene is a single-copy gene that functions in the visual cycle and that the marsupial mole is blind with degenerate eyes, this finding suggests that phenotypic degeneration of the eyes is accompanied by parallel changes at the molecular level as a result of relaxed selective constraints.
Resumo:
The classic view for hypothalamic regulation of anterior pituitary (AP) hormone secretion holds that release of each AP hormone is controlled specifically by a corresponding hypothalamic-releasing hormone (HRH). In this scenario, binding of a given HRH (thyrotropin-, growth hormone-, corticotropin-, and luteinizing hormone-releasing hormones) to specific receptors in its target cell increases the concentration of cytosolic Ca2+ ([Ca2+]i), thereby selectively stimulating the release of the appropriate hormone. However, “paradoxical” responses of AP cells to the four well-established HRHs have been observed repeatedly with both in vivo and in vitro systems, raising the possibility of functional overlap between the different AP cell types. To explore this possibility, we evaluated the effects of HRHs on [Ca2+]i in single AP cells identified immunocytochemically by the hormone they stored. We found that each of the five major AP cell types contained discrete subpopulations that were able to respond to several HRHs. The relative abundance of these multi-responsive cells was 59% for lactotropes, 33% for thyrotropes, and in the range of 47–55% for gonadotropes, corticotropes, and somatotropes. Analysis of prolactin release from single living cells revealed that each of the four HRHs tested were able to induce hormone release from a discrete lactotrope subpopulation, the size of which corresponded closely to that in which [Ca2+]i changes were induced by the same secretagogues. When viewed as a whole, our diverse functional measurements of multi-responsiveness suggest that hypothalamic control of pituitary function is more complicated than previously envisioned. Moreover, they provide a cellular basis for the so-called “paradoxical” behavior of pituitary cells to hypothalamic hypophysiotropic agents.
Resumo:
The ATP-sensitive potassium channel (KATP) regulates insulin secretion in pancreatic β cells. Loss of functional KATP channels because of mutations in either the SUR1 or Kir6.2 channel subunit causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We investigated the molecular mechanism by which a single phenylalanine deletion in SUR1 (ΔF1388) causes PHHI. Previous studies have shown that coexpression of ΔF1388 SUR1 with Kir6.2 results in no channel activity. We demonstrate here that the lack of functional expression is due to failure of the mutant channel to traffic to the cell surface. Trafficking of KATP channels requires that the endoplasmic reticulum-retention signal, RKR, present in both SUR1 and Kir6.2, be shielded during channel assembly. To ask whether ΔF1388 SUR1 forms functional channels with Kir6.2, we inactivated the RKR signal in ΔF1388 SUR1 by mutation to AAA (ΔF1388 SUR1AAA). Inactivation of similar endoplasmic reticulum-retention signals in the cystic fibrosis transmembrane conductance regulator has been shown to partially overcome the trafficking defect of a cystic fibrosis transmembrane conductance regulator mutation, ΔF508. We found that coexpression of ΔF1388 SUR1AAA with Kir6.2 led to partial surface expression of the mutant channel. Moreover, mutant channels were active. Compared with wild-type channels, the mutant channels have reduced ATP sensitivity and do not respond to stimulation by MgADP or diazoxide. The RKR → AAA mutation alone has no effect on channel properties. Our results establish defective trafficking of KATP channels as a molecular basis of PHHI and show that F1388 in SUR1 is critical for normal trafficking and function of KATP channels.
Resumo:
A novel imaging technology, high-speed microscopy, has been used to visualize the process of GLUT4 translocation in response to insulin in single 3T3-L1 adipocytes. A key advantage of this technology is that it requires extremely low light exposure times, allowing the quasi-continuous capture of information over 20–30 min without photobleaching or photodamage. The half-time for the accumulation of GLUT4-eGFP (enhanced green fluorescent protein) at the plasma membrane in a single cell was found to be of 5–7 min at 37°C. This half-time is substantially longer than that of exocytic vesicle fusion in neuroendocrine cells, suggesting that additional regulatory mechanisms are involved in the stimulation of GLUT4 translocation by insulin. Analysis of four-dimensional images (3-D over time) revealed that, in response to insulin, GLUT4-eGFP-enriched vesicles rapidly travel from the juxtanuclear region to the plasma membrane. In nontransfected adipocytes, impairment of microtubule and actin filament function inhibited insulin-stimulated glucose transport by 70 and 50%, respectively. When both filament systems were impaired insulin-stimulated glucose transport was completely inhibited. Taken together, the data suggest that the regulation of long-range motility of GLUT4-containing vesicles through the interaction with microtubule- and actin-based cytoskeletal networks plays an important role in the overall effect of insulin on GLUT4 translocation.
Resumo:
BRCA1 and BRCA2 carriers are at increased risk for both breast and ovarian cancer, but estimates of lifetime risk vary widely, suggesting their penetrance is modified by other genetic and/or environmental factors. The BRCA1 and BRCA2 proteins function in DNA repair in conjunction with RAD51. A preliminary report suggested that a single nucleotide polymorphism in the 5′ untranslated region of RAD51 (135C/G) increases breast cancer risk in BRCA1 and BRCA2 carriers. To investigate this effect we studied 257 female Ashkenazi Jewish carriers of one of the common BRCA1 (185delAG, 5382insC) or BRCA2 (6174delT) mutations. Of this group, 164 were affected with breast and/or ovarian cancer and 93 were unaffected. RAD51 genotyping was performed on all subjects. Among BRCA1 carriers, RAD51-135C frequency was similar in healthy and affected women [6.1% (3 of 49) and 9.9% (12 of 121), respectively], and RAD-135C did not influence age of cancer diagnosis [Hazard ratio (HR) = 1.18 for disease in RAD51-135C heterozygotes, not significant]. However, in BRCA2 carriers, RAD51-135C heterozygote frequency in affected women was 17.4% (8 of 46) compared with 4.9% (2 of 41) in unaffected women (P = 0.07). Survival analysis in BRCA2 carriers showed RAD51-135C increased risk of breast and/or ovarian cancer with an HR of 4.0 [95% confidence interval 1.6–9.8, P = 0.003]. This effect was largely due to increased breast cancer risk with an HR of 3.46 (95% confidence interval 1.3–9.2, P = 0.01) for breast cancer in BRCA2 carriers who were RAD51-135C heterozygotes. RAD51 status did not affect ovarian cancer risk. These results show RAD51-135C is a clinically significant modifier of BRCA2 penetrance, specifically in raising breast cancer risk at younger ages.
Resumo:
The Saccharomyces cerevisiae CDC9 gene encodes a DNA ligase protein that is targeted to both the nucleus and the mitochondria. While nuclear Cdc9p is known to play an essential role in nuclear DNA replication and repair, its role in mitochondrial DNA dynamics has not been defined. It is also unclear whether additional DNA ligase proteins are present in yeast mitochondria. To address these issues, mitochondrial DNA ligase function in S.cerevisiae was analyzed. Biochemical analysis of mitochondrial protein extracts supported the conclusion that Cdc9p was the sole DNA ligase protein present in this organelle. Inactivation of mitochondrial Cdc9p function led to a rapid decline in cellular mitochondrial DNA content in both dividing and stationary yeast cultures. In contrast, there was no apparent defect in mitochondrial DNA dynamics in a yeast strain deficient in Dnl4p (Δdnl4). The Escherichia coli EcoRI endonuclease was targeted to yeast mitochondria. Transient expression of this recombinant EcoRI endonuclease led to the formation of mitochondrial DNA double-strand breaks. While wild-type and Δdnl4 yeast were able to rapidly recover from this mitochondrial DNA damage, clones deficient in mitochondrial Cdc9p were not. These results support the conclusion that yeast rely upon a single DNA ligase, Cdc9p, to carry out mitochondrial DNA replication and recovery from both spontaneous and induced mitochondrial DNA damage.
Resumo:
Rad51 is crucial not only in homologous recombination and recombinational repair but also in normal cellular growth. To address the role of Rad51 in normal cell growth we investigated morphological changes of cells after overexpression of wild-type and a dominant negative form of Rad51 in fission yeast. Rhp51, a Rad51 homolog in Schizosaccharomyces pombe, has a highly conserved ATP-binding motif. Rhp51 K155A, which has a single substitution in this motif, failed to rescue hypersensitivity of a rhp51Δ mutant to methyl methanesulfonate (MMS) and UV, whereas it binds normally to Rhp51 and Rad22, a Rad52 homolog. Two distinct cellular phenotypes were observed when Rhp51 or Rhp51 K155A was overexpressed in normal cells. Overexpression of Rhp51 caused lethality in the absence of DNA-damaging agents, with acquisition of a cell cycle mutant phenotype and accumulation of a 1C DNA population. On the other hand, overexpression of Rhp51 K155A led to a delay in G2 with decondensed nuclei, which resembled the phenotype of rhp51Δ. The latter also exhibited MMS and UV sensitivity, indicating that Rhp51 K155A has a dominant negative effect. These results suggest an association between DNA replication and Rad51 function.
Resumo:
The discovery that several inherited human diseases are caused by mtDNA depletion has led to an increased interest in the replication and maintenance of mtDNA. We have isolated a new mutant in the lopo (low power) gene from Drosophila melanogaster affecting the mitochondrial single-stranded DNA-binding protein (mtSSB), which is one of the key components in mtDNA replication and maintenance. lopo1 mutants die late in the third instar before completion of metamorphosis because of a failure in cell proliferation. Molecular, histochemical, and physiological experiments show a drastic decrease in mtDNA content that is coupled with the loss of respiration in these mutants. However, the number and morphology of mitochondria are not greatly affected. Immunocytochemical analysis shows that mtSSB is expressed in all tissues but is highly enriched in proliferating tissues and in the developing oocyte. lopo1 is the first mtSSB mutant in higher eukaryotes, and its analysis demonstrates the essential function of this gene in development, providing an excellent model to study mitochondrial biogenesis in animals.
Resumo:
Ligand transport through myoglobin (Mb) has been observed by using optically heterodyne-detected transient grating spectroscopy. Experimental implementation using diffractive optics has provided unprecedented sensitivity for the study of protein motions by enabling the passive phase locking of the four beams that constitute the experiment, and an unambiguous separation of the Real and Imaginary parts of the signal. Ligand photodissociation of carboxymyoglobin (MbCO) induces a sequence of events involving the relaxation of the protein structure to accommodate ligand escape. These motions show up in the Real part of the signal. The ligand (CO) transport process involves an initial, small amplitude, change in volume, reflecting the transit time of the ligand through the protein, followed by a significantly larger volume change with ligand escape to the surrounding water. The latter process is well described by a single exponential process of 725 ± 15 ns at room temperature. The overall dynamics provide a distinctive signature that can be understood in the context of segmental protein fluctuations that aid ligand escape via a few specific cavities, and they suggest the existence of discrete escape pathways.
Resumo:
Higher plants express several isoforms of vacuolar and cell wall invertases (CWI), some of which are inactivated by inhibitory proteins at certain stages of plant development. We have purified an apoplasmic inhibitor (INH) of tobacco (Nicotiana tabacum) CWI to homogeneity. Based on sequences from tryptic fragments, we have isolated a full-length INH-encoding cDNA clone (Nt-inh1) via a reverse transcriptase-polymerase chain reaction. Southern-blot analysis revealed that INH is encoded by a single- or low-copy gene. Comparison with expressed sequence tag clones from Arabidopsis thaliana and Citrus unshiu indicated the presence of Nt-inh1-related proteins in other plants. The recombinant Nt-inh1-encoded protein inhibits CWI from tobacco and Chenopodium rubrum suspension-cultured cells and vacuolar invertase from tomato (Lycopersicon esculentum) fruit, whereas yeast invertase is not affected. However, only in the homologous system is the inhibition modulated by the concentration of Suc as previously shown for INH isolated from tobacco cells. Highly specific binding of INH to CWI could be shown by affinity chromatography of a total cell wall protein fraction on immobilized recombinant Nt-inh1 protein. RNA-blot analysis of relative transcript ratios for Nt-inh1 and CWI in different parts of adult tobacco plants revealed that the expression of both proteins is not always coordinate.