965 resultados para sensorimotor synchronization
Resumo:
Background: Synchronization programs have become standard in the dairy industry. In Switzerland, these programs are used but newly. The objective of this study was A) to estimate the pregnancy rate after a Select-Synch protocol in- cluding a low dosage of progesterone in CIDR (1.38 g). As a second step B) this pregnancy rate should be compared to cows from another Swiss study that used a Select-Synch protocol with the 1.9 g insert (Rudolph et al., 2011). Methods: A) 196 cows were included in the study. Cows received a CIDR 1.38 g and 2.5 ml of buserelin i.m. on d 0. On d 7, the CIDR insert was removed and 5 ml of dinoprost was administered i.m. On d 0 a milk sample for progesterone analysis was taken. Pregnancy was determined at or more than 35 days after artificial insemination. B) The 1.38 g group and the 1.9 g group were compared as to cow and farm factors, number of preceding AI’s, gynecological and uterine pretreat- ment and treatment itself. A forward selection procedure was used (test result considered significant if p-value 0.05). Results: A) The pregnancy rate, using the Select-Synch protocol with the CIDR 1.38 g was 44.4%. B) The CIDR 1.9 g Select-Synch group revealed a pregnancy rate of 50.4% (Rudolph et al., 2011). Significant differences between the groups were not found. Conclusion: The 1.38 g CIDR-Select-Synch protocol may be recommended for multiparous dairy cows. The pregnancy rate compared to the 1.9 g CIDR-Select-Synch protocol was 8% lower, but this difference was not significant.
Resumo:
Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 (Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.
Resumo:
Present models of long-term sensitization in Aplysia californica indicate that the enhanced behavioral response is due, at least in part, to outgrowth of sensory neurons mediating defensive withdrawal reflexes. Presumably, this outgrowth strengthens pre-existing connections by formation of new synapses with follower neurons. However, the relationship between the number of sensorimotor contacts and the physiological strength of the connection has never been examined in intact ganglia. As a first step in addressing this issue, we used confocal microscopy to examine sites of contact between sensory and motor neurons in naive animals. Our results revealed relatively few contacts between physiologically connected cells. In addition, the number of contact sites was proportional to the amplitude of the EPSP elicited in the follower motor neuron by direct stimulation of the sensory neuron. This is the first time such a correlation has been observed in the central nervous system. Serotonin is the neurotransmitter most closely examined for its role in modulating synaptic strength at the sensorimotor synapse. However, the structural relationship of serotonergic processes and sensorimotor synapses has never been examined. Surprisingly, serotonergic processes usually made contact with sensory and motor neurons at sites located relatively distant from the sensorimotor synapse. This result implies that heterosynaptic regulation is due to nondirected release of serotonin into the neuropil.
Resumo:
The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.
Resumo:
Gap junctions between neurons form the structural substrate for electrical synapses. Connexin 36 (Cx36, and its non-mammalian ortholog connexin 35) is the major neuronal gap junction protein in the central nervous system (CNS), and contributes to several important neuronal functions including neuronal synchronization, signal averaging, network oscillations, and motor learning. Connexin 36 is strongly expressed in the retina, where it is an obligatory component of the high-sensitivity rod photoreceptor pathway. A fundamental requirement of the retina is to adapt to broadly varying inputs in order to maintain a dynamic range of signaling output. Modulation of the strength of electrical coupling between networks of retinal neurons, including the Cx36-coupled AII amacrine cell in the primary rod circuit, is a hallmark of retinal luminance adaptation. However, very little is known about the mechanisms regulating dynamic modulation of Cx36-mediated coupling. The primary goal of this work was to understand how cellular signaling mechanisms regulate coupling through Cx36 gap junctions. We began by developing and characterizing phospho-specific antibodies against key regulatory phosphorylation sites on Cx36. Using these tools we showed that phosphorylation of Cx35 in fish models varies with light adaptation state, and is modulated by acute changes in background illumination. We next turned our focus to the well-studied and readily identifiable AII amacrine cell in mammalian retina. Using this model we showed that increased phosphorylation of Cx36 is directly related to increased coupling through these gap junctions, and that the dopamine-stimulated uncoupling of the AII network is mediated by dephosphorylation of Cx36 via protein kinase A-stimulated protein phosphatase 2A activity. We then showed that increased phosphorylation of Cx36 on the AII amacrine network is driven by depolarization of presynaptic ON-type bipolar cells as well as background light increments. This increase in phosphorylation is mediated by activation of extrasynaptic NMDA receptors associated with Cx36 gap junctions on AII amacrine cells and by Ca2+-calmodulin-dependent protein kinase II activation. Finally, these studies indicated that coupling is regulated locally at individual gap junction plaques. This work provides a framework for future study of regulation of Cx36-mediated coupling, in which increased phosphorylation of Cx36 indicates increased neuronal coupling.
Resumo:
Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.
Resumo:
An increase in transmitter release accompanying long-term sensitization and facilitation occurs at the glutamatergic sensorimotor synapse of Aplysia. We report that a long-term increase in neuronal Glu uptake also accompanies long-term sensitization. Synaptosomes from pleural-pedal ganglia exhibited sodium-dependent, high-affinity Glu transport. Different treatments that induce long-term enhancement of the siphon-withdrawal reflex, or long-term synaptic facilitation increased Glu uptake. Moreover, 5-hydroxytryptamine, a treatment that induces long-term facilitation, also produced a long-term increase in Glu uptake in cultures of sensory neurons. The mechanism for the increase in uptake is an increase in the V(max) of transport. The long-term increase in Glu uptake appeared to be dependent on mRNA and protein synthesis, and transport through the Golgi, because 5,6-dichlorobenzimidazole riboside, emetine, and brefeldin A inhibited the increase in Glu uptake. Also, injection of emetine and 5,6-dichlorobenzimidazole into Aplysia prevented long-term sensitization. Synthesis of Glu itself may be regulated during long-term sensitization because the same treatments that produced an increase in Glu uptake also produced a parallel increase in Gln uptake. These results suggest that coordinated regulation of a number of different processes may be required to establish or maintain long-term synaptic facilitation.
Resumo:
The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM-19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic context.
Resumo:
Ventricular assist devices (VADs) are blood pumps that offer an option to support the circulation of patients with severe heart failure. Since a failing heart has a remaining pump function, its interaction with the VAD influences the hemodynamics. Ideally, the heart's action is taken into account for actuating the device such that the device is synchronized to the natural cardiac cycle. To realize this in practice, a reliable real-time algorithm for the automatic synchronization of the VAD to the heart rate is required. This paper defines the tasks such an algorithm needs to fulfill: the automatic detection of irregular heart beats and the feedback control of the phase shift between the systolic phases of the heart and the assist device. We demonstrate a possible solution to these problems and analyze its performance in two steps. First, the algorithm is tested using the MIT-BIH arrhythmia database. Second, the algorithm is implemented in a controller for a pulsatile and a continuous-flow VAD. These devices are connected to a hybrid mock circulation where three test scenarios are evaluated. The proposed algorithm ensures a reliable synchronization of the VAD to the heart cycle, while being insensitive to irregularities in the heart rate.
Resumo:
The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.
Resumo:
Enhanced expression of the presynaptic protein synapsin has been correlated with certain forms of long-term plasticity and learning and memory. However, the regulation and requirement for enhanced synapsin expression in long-term memory remains unknown. In the present study the technical advantages of the marine mollusc Aplysia were exploited in order to address this issue. In Aplysia, learning-induced enhancement in synaptic strength is modulated by serotonin (5-HT) and treatment with 5-HT in vitro of the sensorimotor synapse induces long-term facilitation (LTF) of synaptic transmission, which lasts for days, as well as the formation of new connections between the sensory and motor neuron. Results from immunofluorescence analysis indicated that 5-HT treatment upregulates synapsin protein levels within sensory neuron varicosities, the presumed site of neurotransmitter release. To investigate the mechanisms underlying increased synapsin expression, the promoter region of the Aplysia synapsin gene was cloned and a cAMP response element (CRE) was identified, raising the possibility that the transcriptional activator cAMP response element-binding protein-1 (CREB1) mediates the 5-HT-induced regulation of synapsin. Results from Chromatin Immunoprecipitation (ChIP) assays indicated that 5-HT treatment enhanced association of CREB1 surrounding the CRE site in the synapsin promoter and led to increased acetylation of histones H3 and H4 and decreased association of histone deacetylase 5 surrounding the CRE site in the synapsin promoter, a sign of transcriptional activation. In addition, sensory neurons injected with an enhanced green fluorescent protein (EGFP) reporter vector driven by the synapsin promoter exhibited a significant increase in EGFP expression following treatment with 5-HT. These results suggest that synapsin expression is regulated by 5-HT in part through transcriptional activation of the synapsin gene and through CREB1 association with the synapsin promoter. Furthermore, RNA interference that blocks 5-HT-induced elevation of synapsin expression also blocked long-term synaptic facilitation. These results indicate that 5-HT-induced regulation of synapsin is necessary for LTF and that synapsin is part of the cascade of synaptic events involved in the consolidation of memory.
Resumo:
Plasticity at the connections between sensory neurons and their follower cells in Aplysia has been used extensively as a model system to examine mechanisms of simple forms of learning, such as sensitization. Sensitization is induced, at least in part, by the transmitter serotonin (5-HT) and expressed in several forms, including facilitation of sensorimotor connections. Spike broadening has been believed to be a key mechanism underlying facilitation of nondepressed synapses. Previously, this broadening was believed to be dependent primarily on cAMP/protein kinase A (PKA)-mediated reduction of a noninactivating, relatively voltage-independent K$\sp{+}$ current termed the S-K$\sp+$ current (I$\sb{\rm K{,}S}$). Recent evidence, however, suggests that 5-HT-induced somatic spike broadening is composed of at least two components: a cAMP-dependent, rapidly developing component and a cAMP-independent, slowly developing component.^ Phorbol esters, activators of protein kinase C (PKC), mimicked the cAMP-independent component of 5-HT-induced broadening. Staurosporine, which inhibits PKC, had little effect on the rapidly developing component of 5-HT-induced broadening, but inhibited significantly the slowly developing component. These results suggest that PKC is involved in the cAMP-independent component of 5-HT-induced broadening. The membrane currents responsible for the slowly developing component of broadening were examined. Activation of PKC mimicked, and partially occluded, 5-HT-induced modulation of membrane currents above 0 mV, where a voltage-dependent K$\sp+$ current (I$\sb{\rm K{,}V}$) is significantly activated. This modulation was complex because it was associated with a reduction in the magnitude of I$\sb{\rm K{,}V}$, as well as a slowing of both activation and inactivation kinetics of I$\sb{\rm K{,}V}$. These results support the hypothesis that PKC modulates I$\sb{\rm K{,}V}$ and that this modulation contributes to the slowly developing component of 5-HT-induced broadening. Based on these results and others, a new scheme for 5-HT-induced spike broadening is proposed in which the modulatory effects are mediated via two second messenger/protein kinase systems converging and diverging on multiple ionic conductances.^ The relationship between spike broadening and synaptic facilitation was also examined. Pharmacological reduction of I$\sb{\rm K{,}V}$ by low concentrations of 4-aminopyridine (4-AP) led to spike broadening and facilitation of the nondepressed sensorimotor connections, indicating that spike broadening via the reduction of I$\sc{K,V}$ can facilitate the synaptic connection. Further analyses, however, revealed that 4-AP-induced facilitation has qualitative differences from 5-HT- and PKC-induced facilitation. These results suggest that 5-HT- and PKC-induced facilitation of nondepressed synapses is mediated, at least in part, by spike-duration independent (SDI) processes. Under certain conditions, the PKC inhibitor, staurosporine, significantly inhibited the 5-HT-induced facilitation of sensorimotor connections.^ Finally, it was found that activation of PKC increased a basal level of cAMP and that PKC caused desensitization of the 5-HT receptor, which may be a possible negative feedback mechanism through which an extracellular ligand, 5-HT, is regulated. These results suggest that these two second messenger/protein kinase pathways can interact in the sensory neuron. Thus, neuronal plasticity that may contribute to learning and memory appears to involve several complex and interactive processes. ^
Resumo:
Double minutes (dm) are small chromatin particles of 0.3 microns diameter found only in the metaphase cells of human and murine tumors. Dm are unique cytogenetic structures since their numbers per cell show wide variation. At cell division, dm are retained despite the lack of centromeres. In squash preparations, dm show clustering often in association with chromosomes. Human carcinoma cell line SW613-S18 was found to have large numbers of dm and biological characteristics favorable for mitotic synchronization and chromosome isolation experiments.^ S18 cells were synchronized to mitosis with metabolic and mitotic blocking compounds. Mitotic cells were lysed to release chromosomes and dm from the mitotic spindle and the resulting suspensions were fractionated to enrich for dm. The DNA in enriched fractions was characterized. The reassociation kinetics of dm-DNA driven with placental human DNA was similar to the reassociation curve of labeled placental DNA under similar conditions. In situ hybridization of dm-DNA to tumor and normal metaphase cells showed grain localization over the entire karyotype. Dm-DNA was shown by pulse chase DNA replication experiments to replicate during early and mid S-phase of the cell cycle, but not in late S-phase. In addition, BrdUrd incorporation studies showed that dm-DNA replicates only once during the S-phase. Premature chromosome condensation studies suggest the basis of numerical heterogeneity of dm is nondisjunction, not anomalous or unscheduled DNA replication.^ These data and previous cytochemical banding studies of dm in SW613-S18 indicate that dm-DNA is chromosomal in origin. No evidence of gene amplification was found in the DNA reassociation data. It is likely that dm-DNA represents the pale-staining G-band regions of the human karyotype in this cell line. ^
Resumo:
Lake Van sediment cores from the Ahlat Ridge and Northern Basin drill sites of the ICDP project PALEOVAN contain a wealth of information about past environmental processes. The sedimentary sequence was dated using climatostratigraphic alignment, varve chronology, tephrostratigraphy, argon-argon single-crystal dating, radiocarbon dating, magnetostratigraphy, and cosmogenic nuclides. Based on the lithostratigraphic framework, the different age constraints are compiled and a robust and precise chronology of the 600,000 year-old Lake Van record is constructed. Proxy records of total organic carbon content and sediment color, together with the calcium/potassium-ratios and arboreal pollen percentages of the 174-meter-long Ahlat Ridge record, mimic the Greenland isotope stratotype (NGRIP). Therefore, the proxy records are systematically aligned to the onsets of interstadials reflected in the NGRIP or synthesized Greenland ice-core stratigraphy. The chronology is constructed using 27 age control points derived from visual synchronization with the GICC05 timescale, an absolutely-dated speleothem record (e.g., Hulu, Sanbao, Linzhu cave) and the Epica Dome C timescale. In addition, the uppermost part of the sequence is complemented with four ages from Holocene varve chronology and two calibrated radiocarbon ages. Furthermore, nine argon-argon ages and a comparison of the relative paleointensity record of the magnetic field with reference curve PISO-1500 confirm the accuracy of the age model. Also the identification of the Laschamp event via measurements of 10Be in the sediment confirms the presented age model. The chronology of the Ahlat Ridge record is transferred to the 79-meter-long event-corrected composite record from the Northern Basin and supplemented by additional radiocarbon dating on organic marco-remains. The basal age of the Northern Basin record is estimated at ~90 ka. The variations of the time series of total organic carbon content, the Ca/K ratio, and the arboreal pollen percentages illustrate that the presented chronology and paleoclimate data are suited for reconstructions and modeling of the Quaternary and Pleistocene climate evolution in the Near East at millennial timescales. Furthermore, the chronology of the last 250 kyr can be used to test other dating techniques.
Resumo:
Heart rate and breathing rate fluctuations represent interacting physiological oscillations. These interactions are commonly studied using respiratory sinus arrhythmia (RSA) of heart rate variability (HRV) or analyzing cardiorespiratory synchronization. Earlier work has focused on a third type of relationship, the temporal ratio of respiration rate and heart rate (HRR). Each method seems to reveal a specific aspect of cardiorespiratory interaction and may be suitable for assessing states of arousal and relaxation of the organism. We used HRR in a study with 87 healthy subjects to determine the ability to relax during 5 day-resting periods in comparison to deep sleep relaxation. The degree to which a person during waking state could relax was compared to somatic complaints, health-related quality of life, anxiety and depression. Our results show, that HRR is barely connected to balance (LF/HF) in HRV, but significantly correlates to the perception of general health and mental well-being as well as to depression. If relaxation, as expressed in HRR, during day-resting is near to deep sleep relaxation, the subjects felt healthier, indicated better mental well-being and less depressive moods.