994 resultados para road maintenance
Resumo:
Heavy metals, primarily zinc, copper, lead, and chromium, and Polycyclic Aromatic Hydrocarbons (PAHs) are the main hazardous constituents of road runoff. The main sources of these contaminants are vehicle emission, mostly through wear and leakage, although erosion of the road surface and de-icing salts are also recognised pollution sources. The bioavailability of these toxic compounds, and more importantly their potential biomagnification along food chains, could affect aquatic communities persistently exposed to road runoff. Several internationally approved abatement technologies are available for the management of road runoff on new motorway schemes. Recent studies conducted in Cork and Dublin, Ireland demonstrated the efficacy of infiltration trenches as abatement technologies in the removal of both heavy metals and PAHs prior to discharge; the technology was however inefficient in mitigating first flush events. Gully traps with sedimentation chambers, another technology investigated, demonstrated to have a substantially lower removal potential but appeared to be more effective in attenuating surges of contaminants attributed to first flush events. Consequently the employment of combined abatement techniques could efficiently minimise deviations from required effluent concentrations. The studies determined a relatively stationary accumulation of heavy metals and PAHs in sediments close to the point of discharge with a rapid decline in concentration in nearby downstream sediments (<50m). Further, Microtox® Solid Phase testing reported a negligible impact on assemblages exposed to contaminated sediments for all sites investigated. This paper describes pollutant loading from road runoff and mitigation measures from a freshwater deterioration in a water quality perspective. The results and analysis of field samples collected adjacent to a number of roads and motorways in Ireland is also presented. Finally sustainable drainage systems, abatement techniques and technologies available for onsite treatment of runoff are presented to improve and mitigate impacts of vehicular transport on the environment.
Resumo:
An increasing number of studies have implicated serine proteinases in the development of apoptosis. In this study, we assessed the ability of a set of highly specific irreversible inhibitors (activity probes), incorporating an a-amino alkane diphenyl phosphonate moiety, to modulate cell death. In an initial assessment of the cellular toxicity of these activity probes, we discovered that one example, N-a-tetramethylrhodamine phenylalanine diphenylphosphonate {TMR-PheP(OPh)2} caused a concentration-dependent decrease in the viability of HeLa and U251 mg cells. This reduced cell viability was associated with a time-dependent increase in caspase-3 activity, PARP cleavage and phosphatidylserine translocation, establishing apoptosis as the mechanism of cell death. SDS-PAGE analysis of cell lysates prepared from the HeLa cells treated with TMR-PheP(OPh)2, revealed the presence of a fluorescent band of molecular weight 58 kDa. Given that we have previously reported on the use of this type of activity probe to reveal active proteolytic species, we believe that we have identified a chymotrypsin-like serine proteinase activity integral to the maintenance of cell viability.
Resumo:
In this paper, we introduce a macroscopic model for road traffic accidents along highway sections. We discuss the motivation and the derivation of such a model, and we present its mathematical properties. The results are presented by means of examples where a section of a crowded one-way highway contains in the middle a cluster of drivers whose dynamics are prone to road traffic accidents. We discuss the coupling conditions and present some existence results of weak solutions to the associated Riemann Problems. Furthermore, we illustrate some features of the proposed model through some numerical simulations. © The authors 2012.