989 resultados para rare elements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The area known as 'prats de Sant Sebastià' is in Caldes de Malavella. It is part of the wetlands located in the south-eastern end of the Selva Basin. Several areas with unusually high conductivity (EC up to 24,500 uS/cm) have been identified in this place. This fact allows highly specialised and comparatively rare botanical species to grow in this area. These saline soils follow a north-south line-up. The geophysical data, obtained with a field conductivemeter (EM 31), show that this superficial line-up continues in the subsoil. In addition to this, the conductivity cartography, made for an electromagnetic exploration depth of 6 meters, shows that the width of the region where these salinity anomalies take place increases in depth. When included in the hidrogeological context of this sector of the Selva Basin, these data bring new elements for the study of the genesis and working of these marshy environments. The model that future research will have to confirm, maintains that the groundwater discharges coming from the underlying hydrogeothermal aquifer are a conditioning factor of the aforementioned phenomenon. This ascending flow of highly mineralised waters (TDS of about 3,500 mg/l) can produce and keep stable the soil salinity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities have been interfering with the natural biogeochemical cycles of trace elements since the ancient civilizations. Although they are inaccessible and remote, high mountain lake catchments are irrefutably trace-element contaminated by anthropogenic emissions, which can travel by long-range atmospheric transport before they are deposited. This has been revealed by several natural archives. High mountain lake catchments are thus excellent sentinels of long-range contamination. Continuous accumulation can lead to a build up of potentially toxic trace elements in these remote, or relatively remote, ecosystems. The thesis focuses on the biogeochemistry of a suite of trace elements of environmental concern (Ni, Cu, Zn, As, Se, Cd and Pb) in Pyrenean lake catchments, with special emphasis on discerning the “natural” components from the “anthropogenic” contributions. Five other metallic elements (Al, Fe, Ti, Mn and Zr) have also been studied to trace natural fluxes and biogeochemical processes within the lake catchment systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six large-bodied, ≥ 120 g, woodpecker species are listed as near-threatened to critically endangered by the International Union for Conservation of Nature (IUCN). The small population paradigm assumes that these populations are likely to become extinct without an increase in numbers, but the combined influences of initial population size and demographic rates, i.e., annual adult survival and fecundity, may drive population persistence for these species. We applied a stochastic, stage-based single-population model to available demographic rates for Dryocopus and Campephilus woodpeckers. In particular, we determined the change in predicted extinction rate, i.e., proportion of simulated populations that went extinct within 100 yr, to concomitant changes in six input parameters. To our knowledge, this is the first study to evaluate the combined importance of initial population size and demographic rates for the persistence of large-bodied woodpeckers. Under a worse-case scenario, the median time to extinction was 7 yr (range: 1–32). Across the combinations of other input values, increasing initial population size by one female induced, on average, 0.4%–3.2% (range: 0%–28%) reduction in extinction rate. Increasing initial population size from 5–30 resulted in extinction rates < 0.05 under limited conditions: (1) all input values were intermediate, or (2) Allee effect present and annual adult survival ≥ 0.8. Based on our model, these species can persist as rare, as few as five females, and thus difficult-to-detect, populations provided they maintain ≥ 1.1 recruited females annually per adult female and an annual adult survival rate ≥ 0.8. Athough a demographic-based population viability analysis (PVA) is useful to predict how extinction rate changes across scenarios for life-history attributes, the next step for modeling these populations should incorporate more easily acquired data on changes in patch occupancy to make predictions about patch colonization and extinction rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The and RT0 finite element schemes are among the most promising low order elements for use in unstructured mesh marine and lake models. They are both free of spurious elevation modes, have good dispersive properties and have a relatively low computational cost. In this paper, we derive both finite element schemes in the same unified framework and discuss their respective qualities in terms of conservation, consistency, propagation factor and convergence rate. We also highlight the impact that the local variables placement can have on the model solution. The main conclusion that we can draw is that the choice between elements is highly application dependent. We suggest that the element is better suited to purely hydrodynamical applications while the RT0 element might perform better for hydrological applications that require scalar transport calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil and Vitis vinifera L (coarse and fine roots, leaves, berries) concentration and geochemical partitioning of Cu, Pb and Zn were determined in a contaminated calcareous Champagne plot to assess their mobility and transfer. Accumulation ratios in roots remained low (0.1-0.4 for Cu and Zn, <0.05 for Pb). Differences between elements resulted from vegetation uptake strategy and soil partitioning. Copper, significantly associated with the oxidisable fraction (27.8%), and Zn with the acid soluble fraction (33.3%), could be mobilised by rhizosphere acidification and oxidisation, unlike Pb, essentially contained in the reducible fraction (72.4%). Roots should not be considered as a whole since the more reactive fine roots showed higher accumulation ratios than coarse ones. More sensitive response of fine roots, lack of correlation between chemical extraction results and vegetation concentrations, and very limited translocation to aerial parts showed that fine root concentrations should be used when assessing bioavailability. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral and geochemical investigations were carried out on soil samples and fresh rock (trachytes) from two selected soil profiles (TM profile on leptic aluandic soils and TL profile on thapto aluandic-ferralsols) from Mount Bambouto to better understand geochemical processes and mineral paragenesis involved in the development of soils in this environment. In TM profile, the hydrated halloysites and goethite occur in the weathered saprolite boulders of BC horizon while dehydrated halloysite, gibbsite and goethite dominate the soils matrices of BC and A horizons. In TL profile, the dehydrated halloysites and goethite are the most abundant secondary minerals in the weathered saprolites of C and BC horizons while gibbsite, hematite and kaolinite occur in the soil matrices of BC, B and A horizons. The highest gibbsite content is in the platy nodules of B horizon. In both soil profiles, organo-metal complexes (most likely of AI and Fe) are present in the surface A horizon. Geochemically, between the fresh rock and the weathered saprolites in both soils, SiO2, K2O, CaO, Na2O and MgO contents decrease strongly while Fe2O3 and Al2O3 tend to accumulate. The molar ratio of SiO2/Al2O3 (Ki) and the sum of Ca, Mg, K and Na ions (TRB) also decreases abruptly between fresh rocks and the weathered saprolites, but increases significantly at the soil surface. The TM profile shows intense Al enrichment whereas the TL profile highlights enrichment in both AI and Fe as the weathering progresses upwards. Both soil profiles are enriched in Ni, Cu, Ba and Co and depleted in U, Th, Ta, Hf, Y, Sr, Pb, Zr and Zn relative to fresh rock. They also show a relatively low fractionation of the rare earth elements (REE: La, Nd, Sm, Eu, Tb, Yb and Lu), except for Ce which tends to be enriched in soils compared to CI chondrite. All these results give evidence of intense hydrolysis at soil deep in Mount Bambouto resulting in the formation of halloysite which progressively transforms into gibbsite and/or dehydrated halloysite. At the soil surface, the prominent pedogenetic process refers to andosolization with formation of organo-metal complexes. In TL profile, the presence of kaolinite in soil matrices BC and B horizons is consistent with ferralitization at soil deep. In conclusion, soil forming processes in Mount Bambouto are strongly influenced by local climate: (i) in the upper mountain (>2000 m), the fresh, misty and humid climate favors andosolization; whereas (ii) in the middle lands (1700-2000 m) with a relatively dry climate, both andosolization at the soil surface and ferralitization at soil deep act together. (C) 2009 Elsevier B.V. All rights reserved.