970 resultados para rRNA biosynthesis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small nucleolar RNAs (snoRNAs) are small non-coding RNAs that modify RNA molecules such as rRNA and snRNA by guiding 2'-O-ribose methylation (C/D box snoRNA family) and pseudouridylation reactions (H/ACA snoRNA family). H/ACA snoRNAs are also involved in trans-splicing in trypanosomatids. The aims of this work were to characterise the Cl gene cluster that encodes several snoRNAs in Trypanosoma rangeli and compare it with clusters from Trypanosoma cruzi, Trypanosoma brucei, Leishmania major, Leishmania infantum, Leishmania braziliensis and Leptomonas collosoma. The T. rangeli Cl gene cluster is an 801 base pair (bp) repeat sequence that encodes three C/D (Cl1, Cl2 and Cl4) and three H/ACA (Cl3, Cl5 and Cl6) snoRNAs. In contrast to T. brucei, the Cl3 and Cl5 homologues have not been annotated in the Leishmania or T. cruzi genome projects (http//:www.genedb.org). Of note, snoRNA transcribed regions have a high degree of sequence identity among all species and share gene synteny. Collectively, these findings suggest that the Cl cluster could constitute an interesting target for therapeutic (gene silencing) or diagnostic intervention strategies (PCR-derived tools).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 microM in single treatment and of 1 microM and 2 microM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 microM of THC or JWH 015, whereas the expression of TNF-alpha remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTENTS: Summary 28 I. Historic background and introduction 29 II. Diversity of cardenolide forms 29 III. Biosynthesis 30 IV. Cardenolide variation among plant parts 31 V. Phylogenetic distribution of cardenolides 32 VI. Geographic distribution of cardenolides 34 VII. Ecological genetics of cardenolide production 34 VIII. Environmental regulation of cardenolide production 34 IX. Biotic induction of cardenolides 36 X. Mode of action and toxicity of cardenolides 38 XI. Direct and indirect effects of cardenolides on specialist and generalist insect herbivores 39 XII. Cardenolides and insect oviposition 39 XIII. Target site insensitivity 40 XIV. Alternative mechanisms of cardenolide resistance 40 XV. Cardenolide sequestration 41 Acknowledgements 42 References 42 SUMMARY: Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na(+) /K(+) -ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycosyl-inositolphospholipid (GPL) anchoring structures are incorporated into GPL-anchored proteins immediately posttranslationally in the rough endoplasmic reticulum, but the biochemical and cellular constituents involved in this "glypiation" process are unknown. To establish whether glypiation could be achieved in vitro, mRNAs generated by transcription of cDNAs encoding two GPL-anchored proteins, murine Thy-1 antigen and human decay-accelerating factor (DAF), and a conventionally anchored control protein, polymeric-immunoglobulin receptor (IgR), were translated in a rabbit reticulocyte lysate. Upon addition of dog pancreatic rough microsomes, nascent polypeptides generated from the three mRNAs translocated into vesicles. Dispersal of the vesicles with Triton X-114 detergent and incubation of the hydrophobic phase with phosphatidylinositol-specific phospholipases C and D, enzymes specific for GPL-anchor structures, released Thy-1 and DAF but not IgR protein into the aqueous phase. The selective incorporation of phospholipase-sensitive anchoring moieties into Thy-1 and DAF but not IgR translation products during in vitro translocation indicates that rough microsomes are able to support and regulate glypiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha 1,2-mannosidases from glycosyl hydrolase family 47 participate in N-glycan biosynthesis. In filamentous fungi and mammalian cells, α1,2-mannosidases are present in the endoplasmic reticulum (ER) and Golgi complex and are required to generate complex N-glycans. However, lower eukaryotes such Saccharomyces cerevisiae contain only one α1,2-mannosidase in the lumen of the ER and synthesise high-mannose N-glycans. Little is known about the N-glycan structure and the enzyme machinery involved in the synthesis of these oligosaccharides in the dimorphic fungus Sporothrix schenckii. Here, a membrane-bound α-mannosidase from S. schenckii was solubilised using a high-temperature procedure and purified by conventional methods of protein isolation. Analytical zymograms revealed a polypeptide of 75 kDa to be responsible for enzyme activity and this purified protein was recognised by anti-α1,2-mannosidase antibodies. The enzyme hydrolysed Man9GlcNAc2 into Man8GlcNAc2 isomer B and was inhibited preferentially by 1-deoxymannojirimycin. This α1,2-mannosidase was localised in the ER, with the catalytic domain within the lumen of this compartment. These properties are consistent with an ER-localised α1,2-mannosidase of glycosyl hydrolase family 47. Our results also suggested that in contrast to other filamentous fungi, S. schenckii lacks Golgi α1,2-mannosidases and therefore, the processing of N-glycans by α1,2-mannosidases is similar to that present in lower eukaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuroendocrine differentiation has been described in rectal adenocarcinomas receiving neoadjuvant therapy prior to radical surgery, but its clinical relevance is controversial and no data are currently available in colorectal carcinoma metastases as compared to primary tumors. The presence of chromogranin A positive tumor cells was investigated by means of immunohistochemistry on surgical specimens from 54 primary colorectal carcinomas and their corresponding metastases, resected at diagnosis or during tumor progression. In 47 patients, tumor metastases were resected 1 month to 12 years after chemotherapy and/or radiotherapy, while in the remaining seven patients no additional therapy after primary surgery was performed. In primary tumors, neuroendocrine differentiation was found in 12/54 cases (22.2%) as compared to 25/54 metastatic lesions (46.3%; p?=?0.01). The presence of neuroendocrine phenotype was not correlated with any clinical pathological parameter nor with a different proliferation index. However, patients having neuroendocrine cells in the primary tumor had a significantly shorter survival from the time of metastatic spread than those having not (33.3 vs. 55.5 months; p?=?0.04). In summary, our data show that colorectal carcinoma metastases contain a higher percentage of neuroendocrine differentiated cells as compared to their corresponding primaries, a finding possibly related to the influence of chemotherapy in neuroendocrine differentiation during colorectal carcinoma progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, Ascaris DNA was extracted and sequenced from a medieval archaeological sample in Korea. While Ascaris eggs were confirmed to be of human origin by archaeological evidence, it was not possible to pinpoint the exact species due to close genetic relationships among them. Despite this shortcoming, this is the first Ascaris ancient DNA (aDNA) report from a medieval Asian country and thus will expand the scope of Ascaris aDNA research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial DNA of Biomphalaria tenagophila, a mollusc intermediate host of Schistosoma mansoni in Brazil, was sequenced and characterised. The genome size found for B. tenagophila was 13,722 bp and contained 13 messenger RNAs, 22 transfer RNAs (tRNA) and two ribosomal RNAs (rRNA). In addition to sequencing, the mitochondrial DNA (mtDNA) genome organization of B. tenagophila was analysed based on its content and localization of both coding and non-coding regions, regions of gene overlap and tRNA nucleotide sequences. Sequences of protein, rRNA 12S and rRNA 16S nucleotides as well as gene organization were compared between B. tenagophila and Biomphalaria glabrata, as the latter is the most important S. mansoni intermediate host in Brazil. Differences between such species were observed regarding rRNA composition. The complete sequence of the B. tenagophila mitochondrial genome was deposited in GenBank (accession EF433576). Furthermore, phylogenetic relationships were estimated among 28 mollusc species, which had their complete mitochondrial genome deposited in GenBank, using the neighbour-joining method, maximum parsimony and maximum likelihood bootstrap. B. tenagophila was positioned at a branch close to B. glabrata and Pulmonata molluscs, collectively comprising a paraphyletic group, contrary to Opistobranchia, which was positioned at a single branch and constituted a monophyletic group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arabidopsis opr3 mutant is defective in the isoform of 12-oxo-phytodienoate (OPDA) reductase required for jasmonic acid (JA) biosynthesis. Oxylipin signatures of wounded opr3 leaves revealed the absence of detectable 3R,7S-JA as well as altered levels of its cyclopentenone precursors OPDA and dinor OPDA. In contrast to JA-insensitive coi1 plants and to the fad3 fad7 fad8 mutant lacking the fatty acid precursors of JA synthesis, opr3 plants exhibited strong resistance to the dipteran Bradysia impatiens and the fungus Alternaria brassicicola. Analysis of transcript profiles in opr3 showed the wound induction of genes previously known to be JA-dependent, suggesting that cyclopentenones could fulfill some JA roles in vivo. Treating opr3 plants with exogenous OPDA powerfully up-regulated several genes and disclosed two distinct downstream signal pathways, one through COI1, the other via an electrophile effect of the cyclopentenones. We conclude that the jasmonate family cyclopentenone OPDA (most likely together with dinor OPDA) regulates gene expression in concert with JA to fine-tune the expression of defense genes. More generally, resistance to insect and fungal attack can be observed in the absence of JA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neonatal immune response is impaired during the first weeks after birth. To obtain a better understanding of this immaturity, we investigated the development of T cell interactions with B cells in mice. For this purpose, we analyzed the immune response to three T-dependent antigens in vivo: (i) the polyclonal antibody response induced by vaccinia virus; (ii) the production of polyclonal and specific antibodies following immunization with hapten-carrier conjugates; (iii) the mouse mammary tumor virus superantigen (sAg) response involving an increase in sAg-reactive T cells and induction of polyclonal antibody production. After vaccinia virus injection into neonates, the polyclonal antibody response was similar to that observed in adult mice. The antibody response to hapten-carrier conjugates, however, was delayed and reduced. Injection with sAg-expressing B cells from neonatal or adult mice allowed us to determine whether B cells, T cells or both were implicated in the reduced immune response. In these sAg responses, neonatal T cells were stimulated by both neonatal and adult sAg-presenting B cells but only B cells from adult mice differentiated into IgM- and IgG-secreting plasma cells in the neonatal environment in vivo. Injecting neonatal B cells into adult mice did not induce antibody production. These results demonstrate that the environment of the neonatal lymph node is able to support a T and B cell response, and that immaturity of B cells plays a key role in the reduced immune response observed in the neonate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carcinoembryonic antigen (CEA) is a well-known tumor marker, consisting of a single heavily glycosylated polypeptide chain (mol. wt 200 kD), bound to the cell surface by a phosphatidylinositol-glycan anchor. The hydrophobic domain, encoded by the 3' end of the open reading frame of the CEA gene is not present in the mature protein. This domain is assumed to play an important role in the targeting and attachment of CEA to the cell surface. To verify this hypothesis, a recombinant CEA cDNA lacking the 78 b.p. of the 3' region, encoding the 26 a.a. hydrophobic domain, was prepared in a Rc/CMV expression vector containing a neomycin resistance gene. The construct was transfected by the calcium phosphate technique into CEA-negative human and rat colon carcinoma cell lines. Geneticin-resistant transfectants were screened for the presence of CEA in the supernatant and positive clones were isolated. As determined by ELISA, up to 13 micrograms of recombinant CEA per 10(6) cells was secreted within 72 hr by the human transfected cells and about 1 microgram by the rat cells. For comparison, two human carcinoma cell lines, CO112 and LS174T, selected for high CEA expression, shed about 45 and 128 ng per 10(6) cells within 72 hr, respectively. Western blot analysis showed that the size of the recombinant CEA secreted by the transfected human cells is identical to that of reference CEA purified from human colon carcinomas metastases (about 200 kD). The recombinant CEA synthesized by the transfected rat carcinoma cells has a smaller size (about 144 kD, possibly due to incomplete glycosylation), as has already been observed for CEA produced by rat colon carcinoma cells transfected with full-length CEA cDNA. The 100-fold increase in secretion of rCEA encoded by truncated CEA cDNA transfected in human cells confirms the essential role of this domain in the targeting and anchoring of the glycoprotein. These results suggest a new approach for the in vitro production of large amounts of CEA needed in research laboratories and for immunoassay kits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new trypanosomatid species, Blastocrithidia cyrtomeni, is herein described using morphological and molecular data. It was found parasitising the alimentary tract of the insect host Cyrtomenus bergi, a polyphagous pest. The morphology of B. cyrtomeni was investigated using light and transmission microscopy and molecular phylogeny was inferred from the sequences of spliced leader RNA (SL rRNA) - 5S rRNA gene repeats and the 18S small subunit (SSU) rRNA gene. Epimastigotes of variable size with straphanger cysts adhering to the middle of the flagellum were observed in the intestinal tract, hemolymph and Malpighian tubules. Kinetoplasts were always observed anterior to the nucleus. The ultrastructure of longitudinal sections of epimastigotes showed the flagellum arising laterally from a relatively shallow flagellar pocket near the kinetoplast. SL RNA and 5S rRNA gene repeats were positive in all cases, producing a 0.8-kb band. The amplicons were 797-803 bp long with > 98.5% identity, indicating that they originated from the same organism. According to the sequence analysis of the SL-5S rRNA gene repeats and the 18S SSU rRNA gene, B. cyrtomeni is different from all other known species or isolates of Trypanosomatidae. Both analyses indicate that among known species, it is most closely related to Blastocrithidia triatomae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE De novo lipogenesis is involved in fatty acid biosynthesis and could be involved in the regulation of the triglyceride storage capacity of adipose tissue. However, the association between lipogenic and lipolytic genes and the evolution of morbidly obese subjects after bariatric surgery remains unknown. In this prospective study we analyze the association between the improvement in the morbidly obese patients as a result of bariatric surgery and the basal expression of lipogenic and lipolytic genes. METHODS We study 23 non diabetic morbidly obese patients who were studied before and 7 months after bariatric surgery. Also, we analyze the relative basal mRNA expression levels of lipogenic and lipolytic genes in epiploic visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (SAT). RESULTS When the basal acetyl-CoA carboxylase 1 (ACC1), acetyl-CoA synthetase 2 (ACSS2) and ATP citrate lyase (ACL) expression in SAT was below percentile-50, there was a greater decrease in weight (P = 0.006, P = 0.034, P = 0.026), body mass index (P = 0.008, P = 0.033, P = 0.034) and hip circumference (P = 0.033, P = 0.021, P = 0.083) after bariatric surgery. In VAT, when the basal ACSS2 expression was below percentile-50, there was a greater decrease in hip circumference (P = 0.006). After adjusting for confounding variables in logistic regression models, only the morbidly obese patients with SAT or VAT ACSS2 expression ≥ P50 before bariatric surgery had a lower percentage hip circumference loss (