987 resultados para rDNA systematics
Resumo:
Cytogenetic analyses were carried out in five species of Pimelodella from the main sub-basins of Upper Parana River and Paraiba do Sul River. The diploid number ranged from 2n = 46 to 2n = 58 chromosomes, and all populations differed in the karyotype constitution. The presence of supernumerary chromosomes as well as the occurrence of a XX/XY sex chromosome system and heterochromatin polymorphisms were detected. The 18S rDNA FISH confirmed the presence of single NORs and revealed additional sites on supernumerary chromosomes. The number and location of 5S rDNA sites were variable. Aspects related to the karyotypic evolution within the genus are discussed.
Resumo:
Stingless bees of the genus Partamona are distributed from southern Mexico to southern Brazil. This genus has been subject to different approaches to solve questions concerning general biology, taxonomy, systematics and biogeography, but population studies applying molecular techniques are inexistent. We analyzed the genetic structure of P. helleri across its geographic distribution along the coastal Atlantic tropical rainforest in Brazil. Ten mtDNA haplotypes were observed in 47 colonies of P. helleri of which some were exclusive and others shared among geographic sub-groups. Statistical analysis showed high genetic differentiation between geographic areas sampled. Fragmentation of the Atlantic forest during Pleistocene glaciations is discussed as a possible cause of the present haplotype distribution and frequency.
Resumo:
Endosymbiotic bacteria of the genus Wolbachia are widespread among arthropods and cause a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, male-killing, and host feminization. In this study, we used three sets of Wolbachia-specific primers (16S rDNA, ftsZ, and wsp) in conjunction with the polymerase chain reaction (PCR), cloning and sequencing to study the infection of fruit flies (Anastrepha spp. and Ceratitis capitata) by Wolbachia. The flies were collected at several localities in Brazil and at Guayaquil, Ecuador. All of the fruit flies studied were infected with Wolbachia supergroup A, in agreement with the high prevalence of this group in South America. Phylogenetic analysis showed that the wsp gene was the most sensitive gene for studying the relationships among Wolbachia strains. The Wolbachia sequences detected in these fruit flies were similar to those such as wMel reported for other fruit flies. These results show that the infection of Anastrepha fruit flies by Wolbachia is much more widespread than previously thought.
Resumo:
Aim We present a molecular phylogenetic analysis of Brotogeris (Psittacidae) using several distinct and complementary approaches: we test the monophyly of the genus, delineate the basal taxa within it, uncover their phylogenetic relationships, and finally, based on these results, we perform temporal and spatial comparative analyses to help elucidate the historical biogeography of the Neotropical region. Location Neotropical lowlands, including dry and humid forests. Methods Phylogenetic relationships within Brotogeris were investigated using the complete sequences of the mitochondrial genes cyt b and ND2, and partial sequences of the nuclear intron 7 of the gene for Beta Fibrinogen for all eight species and 12 of the 17 taxa recognized within the genus (total of 63 individuals). In order to delinetae the basal taxa within the genus we used both molecular and plumage variation, the latter being based on the examination of 597 skin specimens. Dates of divergence and confidence intervals were estimated using penalized likelihood. Spatial and temporal comparative analyses were performed including several closely related parrot genera. Results Brotogeris was found to be a monophyletic genus, sister to Myiopsitta. The phylogenetic analyses recovered eight well-supported clades representing the recognized biological species. Although some described subspecies are diagnosably distinct based on morphology, there was generally little intraspecific mtDNA variation. The Amazonian species had different phylogenetic affinities and did not group in a monophyletic clade. Brotogeris diversification took place during the last 6 Myr, the same time-frame as previously found for Pionus and Pyrilia. Main conclusions The biogeographical history of Brotogeris implies a dynamic history for South American biomes since the Pliocene. It corroborates the idea that the geological evolution of Amazonia has been important in shaping its biodiversity, argues against the idea that the region has been environmentally stable during the Quaternary, and suggests dynamic interactions between wet and dry forest habitats in South America, with representatives of the Amazonian biota having several independent close relationships with taxa endemic to other biomes.
Resumo:
Acestrorhynchus is the sole genus of the family Acestrorhynchidae which includes 14 species currently recognized as valid. Species of Acestrorhynchus comprise small-to-medium sized piscivorous fishes and have been traditionally grouped on the basis of well-defined color patterns. A recent phylogeny, based on morphological characters, could not resolve the phylogenetic affinities of A. heterolepis and the relationships among the species of the clade formed by A. abbreviatus, A. altus, A. falcatus, A. lacustris, and A. pantaneiro. The simultaneous analysis of two mitochondrial genes (16S and ATP synthase subunits 6 and 8) and one nuclear intron (S7) was able to resolve the latter clade, but the position of A. heterolepis remained unresolved. The combination of the molecular and morphological data sets in a total evidence analysis resulted in a well-resolved hypothesis regarding the phylogenetic relationships of Acestrorhynchus species. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Despite the widespread distribution of Astyanax bockmanni in streams from Upper Parana River system in central, southeastern, and southern Brazil, just recently, it has been identified as a distinct Astyanax species. Cytogenetic studies were performed in two populations of this species, revealing conservative features. A. bockmanni shows 2n = 50 chromosomes, a karyotypic formula composed of 10 M + 12SM + 12ST + 16A and multiple Ag-NORs. Eight positive signals in subtelocentric/acrocentric chromosomes were identified by fluorescent in situ hybridization (FISH) with 18S rDNA probes. After FISH with 5S rDNA probes, four sites were detected, comprising the interstitial region of a metacentric pair and the terminal region on long arms of another metracentric pair. Little amounts of constitutive heterochromatin were observed, mainly distributed at distal region in two chromosomal pairs. Additionally, heterochromatin was also located close to the centromeres in some chromosomes. No positive signals were detected in the chromosomes of A. bockmanni by FISH with the As-51 satellite DNA probe. The studied species combines a set of characteristics previously identified in two different Astyanax groups. The chromosomal evolution in the genus Astyanax is discussed.
Resumo:
Mitotic chromosomes of Metynnis maculatus (KNER 1860) (Teleostei, Characiformes), a fish species that occurs in the Amazon and Parana-Paraguay river basins, were analyzed for the first time by Giemsa and Ag-NOR staining, C-banding and fluorescence in situ hybridization (FISH) with 18S and 5S rDNA sequences. The basic chromosome number of the species is 2n=62 (32M+22SM+4ST+4A) and, in addition to the 62 regular chromosomes, one small acrocentric supernumerary B chromosome was found in part of the specimens analyzed. Four active NORs were present, and constitutive heterochromatin blocks were found in the pericentromeric region of several chromosomes. A heterochromatic block was also present in the interstitial portion of the submetacentric NOR-bearing pair and the B chromosome was entirely heterochromatic. FISH using an 18S rDNA probe confirmed the results obtained with AgNO(3) staining, and an additional signal was also present on the B chromosomes. 5S rDNA sequences mapped only to the largest acrocentric pair. This is the first description of supernumerary B chromosomes in Serrasalminae, and this karyotype characterization may be useful in further studies about chromosome evolution in this fish group.
Resumo:
Ribosomal RNA genes of most insects are interrupted by R1/R2 retrotransposons. The occurrence of R2 retrotransposons in sciarid genomes was studied by PCR and Southern blot hybridization in three Rhynchosciara species and in Trichosia pubescens. Amplification products with the expected size for non-truncated R2 elements were only obtained in Rhynchosciara americana. The rDNA in this species is located in the proximal end of the X mitotic chromosome but in the salivary gland is associated with all four polytene chromosomes. Approximately 50% of the salivary gland rDNA of most R. americana larval groups analysed had an insertion in the R2 site, while no evidence for the presence of R1 elements was found. In-situ hybridization results showed that rDNA repeat units containing R2 take part in the structure of the extrachromosomal rDNA. Also, rDNA resistance to Bal 31 digestion could be interpreted as evidence for nonlinear rDNA as part of the rDNA in the salivary gland. Insertions in the rDNA of three other sciarid species were not detected by Southern blot and in-situ hybridization, suggesting that rDNA retrotransposons are significantly under-represented in their genomes in comparison with R. americana. R2 elements apparently restricted to R. americana correlate with an increased amount of repetitive DNA in its genome in contrast to other Rhynchosciara species. The results obtained in this work together with previous results suggest that evolutionary changes in the genus Rhynchosciara occurred by differential genomic occupation not only of satellite DNA but possibly also of rDNA retrotransposons.
Resumo:
Evolutionary novelties in the skeleton are usually expressed as changes in the timing of growth of features intrinsically integrated at different hierarchical levels of development(1). As a consequence, most of the shape- traits observed across species do vary quantitatively rather than qualitatively(2), in a multivariate space(3) and in a modularized way(4,5). Because most phylogenetic analyses normally use discrete, hypothetically independent characters(6), previous attempts have disregarded the phylogenetic signals potentially enclosed in the shape of morphological structures. When analysing low taxonomic levels, where most variation is quantitative in nature, solving basic requirements like the choice of characters and the capacity of using continuous, integrated traits is of crucial importance in recovering wider phylogenetic information. This is particularly relevant when analysing extinct lineages, where available data are limited to fossilized structures. Here we show that when continuous, multivariant and modularized characters are treated as such, cladistic analysis successfully solves relationships among main Homo taxa. Our attempt is based on a combination of cladistics, evolutionary- development- derived selection of characters, and geometric morphometrics methods. In contrast with previous cladistic analyses of hominid phylogeny, our method accounts for the quantitative nature of the traits, and respects their morphological integration patterns. Because complex phenotypes are observable across different taxonomic groups and are potentially informative about phylogenetic relationships, future analyses should point strongly to the incorporation of these types of trait.
Resumo:
The morphology and phylogenetic relationships of a new genus and two new species of Neotropical freshwater stingrays, family Potamotrygonidae, are investigated and described in detail. The new genus, Heliotrygon, n. gen., and its two new species, Heliotrygon gomesi, n. sp. (type-species) and Heliotrygon rosai, n. sp., are compared to all genera and species of potamotrygonids, based on revisions in progress. Some of the derived features of Heliotrygon include its unique disc proportions (disc highly circular, convex anteriorly at snout region, its width and length very similar), extreme subdivision of suborbital canal (forming a complex honeycomb-like pattern anterolaterally on disc), stout and triangular pelvic girdle, extremely reduced caudal sting, basibranchial copula with very slender and acute anterior extension, and precerebral and frontoparietal fontanellae of about equal width, tapering very little posteriorly. Both new species can be distinguished by their unique color patterns: Heliotrygon gomesi is uniform gray to light tan or brownish dorsally, without distinct patterns, whereas Heliotrygon rosai is characterized by numerous white to creamy-white vermiculate markings over a light brown, tan or gray background color. Additional proportional characters that may further distinguish both species are also discussed. Morphological descriptions are provided for dermal denticles, ventral lateral-line canals, skeleton, and cranial, hyoid and mandibular muscles of Heliotrygon, which clearly corroborate it as the sister group of Paratrygon. Both genera share numerous derived features of the ventral lateral-line canals, neurocranium, scapulocoracoid, pectoral basals, clasper morphology, and specific patterns of the adductor mandibulae and spiracularis medialis muscles. Potamotrygon and Plesiotrygon are demonstrated to share derived characters of their ventral lateral-line canals, in addition to the presence of angular cartilages. Our morphological phylogeny is further corroborated by a molecular phylogenetic analysis of cytochrome b based on four sequences (637 base pairs in length), representing two distinct haplotypes for Heliotrygon gomesi. Parsimony analysis produced a single most parsimonious tree revealing Heliotrygon and Paratrygon as sister taxa (boot-strap proportion of 70%), which together are the sister group to a clade including Plesiotrygon and species of Potamotrygon. These unusual stingrays highlight that potamotrygonid diversity, both in terms of species composition and undetected morphological and molecular patterns, is still poorly known.
Resumo:
A new species of cubozoan jellyfish has been discovered in shallow waters of Bonaire, Netherlands ( Dutch Caribbean). Thus far, approximately 50 sightings of the species, known commonly as the Bonaire banded box jelly, are recorded, and three specimens have been collected. Three physical encounters between humans and the species have been reported. Available evidence suggests that a serious sting is inflicted by this medusa. To increase awareness of the scientific disciplines of systematics and taxonomy, the public has been involved in naming this new species. The Bonaire banded box jelly, Tamoya ohboya, n. sp., can be distinguished from its close relatives T. haplonema from Brazil and T. sp. from the southeastern United States by differences in tentacle coloration, cnidome, and mitochondrial gene sequences. Tamoya ohboya n. sp. possesses striking dark brown to reddish-orange banded tentacles, nematocyst warts that densely cover the animal, and a deep stomach. We provide a detailed comparison of nematocyst data from Tamoya ohboya n. sp., T. haplonema from Brazil, and T. sp. from the Gulf of Mexico.
Resumo:
Members of Parasabella minuta Treadwell, 1941, subsequently moved to Perkinsiana, were collected during a survey of rocky intertidal polychaetes along the state of Sao Paulo, Brazil. Additional specimens, which are referred to two new species, were also found in similar habitats from the Bocas del Toro Archipelago, Caribbean Panama, and Oahu Island, Hawaii. A phylogenetic analysis of Sabellinae, including members of P. minuta and the two new species, provided justification for establishing a new generic hypothesis, Sabellomma gen. nov., for these individuals. Formal definitions are also provided for Sabellomma minuta gen. nov., comb. nov., S. collinae gen. nov., spec. nov., and S. harrisae gen. nov., spec. nov., along with descriptions of individuals to which these hypotheses apply. The generic name Aracia nom. nov., is provided to replace Kirkia Nogueira, Lopez and Rossi, 2004, pre-occupied by a mollusk.
Resumo:
Difficulties concerning the taxonomy of stauromedusae are long known, and there is a clear need for taxonomic revision of the genus Haliclystus, as well as the reevaluation of some species. Haliclystus antarcticus Pfeffer, 1889 is recorded from Admiralty Bay, King George Island, Antarctic Peninsula. Due to the lack of detailed information on this species, we provide a redescription, presenting new data on the cnidome, morphometry, geographical distribution and intraspecific variation. Based on these characters, we propose that our specimens and Haliclystus auricula from Chile and Argentina are synonymous and should be classified as H. antarcticus. We also review the worldwide distribution of the genus Haliclystus Clark, 1863 and discuss taxonomic issues, concluding that some characters traditionally used in the taxonomy of the group should be used cautiously.
Resumo:
Among the Opiliones, species of the suborders Cyphophthalmi, Eupnoi, Dyspnoi and Laniatores have shown very diverse diploid chromosome numbers. However, only certain Eupnoi species exhibit XY/XX and ZZ/ZW sex chromosome systems. Considering the scarcity of karyotypical information and the absence of structurally identifiable sex chromosomes in the suborder Laniatores, we decided to analyse the chromosomes and bivalents of Discocyrtus pectinifemur (Gonyleptidae) to identify possible sex differences. Testicular cells examined under light microscopy showed it high diploid number, 2n = 88, meta/submetacentric chromosome morphology and a nucleolar organizer region on pair 35. Prophase I microspreading observed in transmission electron microscopy exhibited 44 synaptonemal complexes with similar electron density and thickness. The total and regular synapsis between the chromosomes of the bivalents was also noted in pachytene nuclei. Male mitotic and meiotic chromosomes revealed no distinct characteristic that could be related to the occurrence of heteromorphic sex chromosomes. Evolutionary trends of chromosome differentiation in the four suborders of Opiliones are discussed here.
Resumo:
The generic identity of Odontophrynus moratoi is controversial since the original description due to the presence of intermediate morphological features between the genera Odontophrynus and Proceratophrys. Herein we performed molecular analyses of three genes (16S, cyt b and Rag-1) and recovered O. moratoi deeply imbedded inside a clade containing only Proceratophrys species, appearing as the sister group of Proceratophrys concavitympanum. Therefore, this study formally transfers the species O. moratoi to the genus Proceratophrys [Proceratophrys moratoi (Jim & Caramaschi 1980) comb. nov].