990 resultados para r codes
Resumo:
The incorporation of one-dimensional simulation codes within engine modelling applications has proved to be a useful tool in evaluating unsteady gas flow through elements in the exhaust system. This paper reports on an experimental and theoretical investigation into the behaviour of unsteady gas flow through catalyst substrate elements. A one-dimensional (1-D) catalyst model has been incorporated into a 1-D simulation code to predict this behaviour.r/>r/>Experimental data was acquired using a ‘single pulse’ test rig. Substrate samples were tested under ambient conditions in order to investigate a range of regimes experienced by the catalyst during operation. This allowed reflection and transmission characteristics to be quantified in relation to both geometric and physical properties of substrate elements. Correlation between measured and predicted results is demonstrably good and the model provides an effective analysis tool for evaluating unsteady gas flow through different catalytic converter designs.
Resumo:
A previously unreported alcohol dehydrogenase enzyme in the mutant soil bacterium Pseudomonas putida UV4 catalyses the reduction of 2-, 3- and 4-acylpyridines to afford the corresponding (S)-1-pyridyl alkanols, with moderate to high e.e., whilst under the same conditions 2,6-diacetylpyridine is readily converted to the corresponding enantiopure C2-symmetric (S,S)-diol in one step. In contrast, the toluene dioxygenase enzyme in the same organism catalyses the hydroxylation of 2- and 3-alkylpyridines to (R)-1-(2-pyridyl) and (R)-1-(3-pyridyl)alkanols. This combination of oxidative and reductive biotransformations thus provides a method for preparing both enantiomers of chiral 1-pyridyl alkanols using one biocatalyst.
Resumo:
Particles of most virus species accurately package a single genome, but there are indications that the pleomorphic particles of parainfluenza viruses incorporate multiple genomes. We characterized a stable measles virus mutant that efficiently packages at least two genomes. The first genome is recombinant and codes for a defective attachment protein with an appended domain interfering with fusion-support function. The second has one adenosine insertion in a purine run that interrupts translation of the appended domain and restores function. In that genome, a one base deletion in a different purine run abolishes polymerase synthesis, but restores hexameric genome length, thus ensuring accurate RNA encapsidation, which is necessary for efficient replication. Thus, the two genomes are complementary. The infection kinetics of this mutant indicate that packaging of multiple genomes does not negatively affect growth. We also show that polyploid particles are produced in standard infections at no expense to infectivity. Our results illustrate how the particles of parainfluenza viruses efficiently accommodate cargoes of different volume, and suggest a mechanism by which segmented genomes may have evolved.