950 resultados para pyrene fluorescence spectroscopy
Resumo:
The sequence distribution studies on the acrylonitrile-methylmethacrylate copolymer of high methylmethacrylate (M) content (30%
Resumo:
The fluorescence emission spectrum of soybean dihydrofolate reductase suggests that the emitting tryptophan residues are situated in a hydrophobic microenvironment. The dissociation constants determined from fluorescence and circular dichroism data reveal that the soybean enzyme has a lower affinity for substrates and substrate analogs than that determined for dihydrofolate reductases isolated from other sources. The binding of methotrexate to the soybean enzyme does not affect the binding of NADPH. Similarly, the binding of NADPH has no effect on subsequent methotrexate binding. Polarimetric study indicates that the enzyme has a low (ca. 5%) α-helical content. Addition of dihydrofolate to the soybean enzyme results in the generation of a positive ellipticity band at 298 nm with a molar ellipticity, [θ], of 186,000, whereas the binding of folate induces a negative ellipticity band at 280 nm with [θ] of −181,000. The qualitative and quantitative differences in the circular dichroism of the enzyme-dihydrofolate and enzyme-folate complexes indicate that the mode of binding of these ligands may be different. The formation of an enzyme-NADPH complex is accompanied by a negative Cotton effect at 270 nm. These studies indicate that the binding of substrates or inhibitors causes significant conformational changes in the enzyme and also leads to the formation of a number of spectroscopically identifiable complexes.
Resumo:
The thermodynamics of tie binding of calcium and magnesium ions to a calcium binding protein from Entamoeba histolytica was investigated by isothermal titration calorimetry (ITC) in 20 mM MOPS buffer (pH 7.0) at 20 degrees C. Enthalpy titration curves of calcium show the presence of four Ca2+ binding sites, There exist two low-affinity sites for Ca2+, both of which are exothermic in nature and with positive cooperative interaction between them. Two other high affinity sites for Ca2+ exist of which one is endothermic and the other exothermic, again with positive cooperative interaction. The binding constants for Ca2+ at the four sites have been verified by a competitive binding assay, where CaBP competes with a chromophoric chelator 5, 5'-Br-2 BAPTA to bind Ca2+ and a Ca2+ titration employing intrinsic tyrosine fluorescence of the protein, The enthalpy of titration of magnesium in the absence of calcium is single site and endothermic in nature. In the case of the titrations performed using protein presaturated with magnesium, the amount of heat produced is altered. Further, the interaction between the high-affinity sites changes to negative cooperativity. No exchange of heat was observed throughout the addition of magnesium in the presence of 1 mM calcium, Titrations performed on a cleaved peptide comprising the N-terminus and the central linker show the existence of two Ca2+ specific sites, These results indicate that this CaBP has one high-affinity Ca-Mg site, one high-affinity Ca-specific site, and two low-affinity Ca-specific sites. The thermodynamic parameters of the binding of these metal ions were used to elucidate the energetics at the individual site(s) and the interactions involved therein at various concentrations of the denaturant, guanidine hydrochloride, ranging from 0.05 to 6.5 M. Unfolding of the protein was also monitored by titration calorimetry as a function of the concentration of the denaturant. These data show that at a GdnHCl concentration of 0.25 M the binding affinity for the Mg2+ ion is lost and there are only two sites which can bind to Ca2+, with substantial loss cooperativity. At concentrations beyond 2.5 M GdnHCl, at which the unfolding of the tertiary structure of this protein is observed by near UV CD spectroscopy, the binding of Ca2+ ions is lost. We thus show that the domain containing the two low-affinity sites is the first to unfold in the presence of GdnHCl. Control experiments with change in ionic strength by addition of KCI in the range 0.25-1 M show the existence of four sites with altered ion binding parameters.
Resumo:
Abstract. We have used chlortetracycline (CTC) as a fluorescent probe to detect the distribution of sequestered calcium in multicellular stages of Dictyostelium discoideum. Tips of late aggregates, slugs and early culminating masses fluoresce very strongly. Most of the fluorescence is intracellular in origin and emanates from a small number of intense punctate sources. The sources correspond in part to autophagic vacuoles viz. neutral-red staining, acidic digestive vesicles, and may also include intracellular organelles; cytoplasmic fluorescence is much weaker in comparison. The level of fluorescence drops in the middle portion of slugs and rises again in the posteriormost region, though not to as high a level as in the tip. This holds good irrespective of whether CTC is applied only in the neighbourhood of the aggregate centre, only in the aggregate periphery, or to the whole aggregate. We infer that there must be a good deal of mixing in the stages leading from aggregation to slug formation; thus the serial order in which cells enter an aggregate does not bear any relation to their ultimate fates. The other implication of our study is that calcium sequestration is much more extensive in prestalk and anterior-like cells than in prespore cells. These findings are discussed with regard to possible implications for pattern formation.
Resumo:
Monosulphides of the first-row transition metals have been studied by X-ray and UV photoelectron spectroscopy. Systematics in the valence bands as well as metal and sulphur core levels across the series have been discussed. Exchange splittings and spin-orbit splittings in these compounds have been examined. CuS is found to show features of both S2 and S22.
Resumo:
The nature of coordination in metal monothiocarbamates is shown to depend on the hardness or softness of the metal ton. Thus, the monothiocarbamate ion acts as a monodentate ligand with metal-sulphur bending when the metal ion is a soft acid while it acts as a bidentate ligand when the metal ion is a hard acid; it can exhibit either behaviour when the metal ion is a borderline acid. In dialkyltin and dialkylmonocholorotin complexes, the monothiocarbamate ion acts as a bidentate ligand with strong Sn-S bonding while in trialkyl-or triaryl-tin complexes it acts essentially as a monodentate ligand. Thus, R3Sn(I) seems to be a soft or borderline acid while R2Sn(II) is a hard acid.
Resumo:
Arsenic selenide-telluride glasses have been investigated by X-ray absorption and photoelectron spectroscopy. The core electron energy shifts and chemical shifts in K-absorption edge measurements associated with the glass-crystal transitions of pure As2Se3 and As2Te3 have been studied. The effect of composition on the core level energy and valence bands of As2(Se,Te)3 glasses, has been discussed. Mixed-composition glasses are found to be considerably ionic.
Resumo:
To obtain data on phytoplankton dynamics with improved spatial and temporal resolution, and at reduced cost, traditional phytoplankton monitoring methods have been supplemented with optical approaches. In this thesis, I have explored various fluorescence-based techniques for detection of phytoplankton abundance, taxonomy and physiology in the Baltic Sea. In algal cultures used in this thesis, the availability of nitrogen and light conditions caused changes in pigmentation, and consequently in light absorption and fluorescence properties of cells. In the Baltic Sea, physical environmental factors (e.g. mixing depth, irradiance and temperature) and related seasonal succession in the phytoplankton community explained a large part of the seasonal variability in the magnitude and shape of Chlorophyll a (Chla)-specific absorption. The variability in Chla-specific fluorescence was related to the abundance of cyanobacteria, the size structure of the phytoplankton community, and absorption characteristics of phytoplankton. Cyanobacteria show very low Chla-specific fluorescence. In the presence of eukaryotic species, Chla fluorescence describes poorly cyanobacteria. During cyanobacterial bloom in the Baltic Sea, phycocyanin fluorescence explained large part of the variability in Chla concentrations. Thus, both Chla and phycocyanin fluorescence were required to predict Chla concentration. Phycobilins are major light harvesting pigments for cyanobacteria. In the open Baltic Sea, small picoplanktonic cyanobacteria were the main source of phycoerythrin fluorescence and absorption signal. Large filamentous cyanobacteria, forming harmful blooms, were the main source of the phycocyanin fluorescence signal and typically their biomass and phycocyanin fluorescence were linearly related. Using phycocyanin fluorescence, dynamics of cyanobacterial blooms can be detected at high spatial and seasonal resolution not possible with other methods. Various taxonomic phytoplankton pigment groups can be separated by spectral fluorescence. I compared multivariate calibration methods for the retrieval of phytoplankton biomass in different taxonomic groups. Partial least squares regression method gave the closest predictions for all taxonomic groups, and the accuracy was adequate for phytoplankton bloom detection. Variable fluorescence has been proposed as a tool to study the physiological state of phytoplankton. My results from the Baltic Sea emphasize that variable fluorescence alone cannot be used to detect nutrient limitation of phytoplankton. However, when combined with experiments with active nutrient manipulation, and other nutrient limitation indices, variable fluorescence provided valuable information on the physiological responses of the phytoplankton community. This thesis found a severe limitation of a commercial fast repetition rate fluorometer, which couldn t detect the variable fluorescence of phycoerythrin-lacking cyanobacteria. For these species, the Photosystem II absorption of blue light is very low, and fluorometer excitation light did not saturate Photosystem II during a measurement. This thesis encourages the use of various in vivo fluorescence methods for the detection of bulk phytoplankton biomass, biomass of cyanobacteria, chemotaxonomy of phytoplankton community, and phytoplankton physiology. Fluorescence methods can support traditional phytoplankton monitoring by providing continuous measurements of phytoplankton, and thereby strengthen the understanding of the links between biological, chemical and physical processes in aquatic ecosystems.
Resumo:
Sodium ethylselenolates with functional groups X (where X = -OH, -COOH, -COOMe and -COOEt) at beta-carbon were prepared in situ by reductive cleavage of corresponding diselenide with NaBH4 either in methanol or aqueous ammonia. Treatment of these selenolates with [M2Cl2(mu-Cl)(2)(PR'(3))(2)] (M = Pd or Pt; PR'(3) = PMePh2, PnPr(3)) in different stoichiometry yielded various bi- and tri-nuclear complexes. The homoleptic hexanuclear complexes [Pd(mu-SeCH2CH2X)(2)](6) (X = OH, COOH, COOEt), were obtained by reacting Na2PdCl4 with NaSeCH2CH2X. All these complexes have been fully characterized. Molecular structures of ethylselenolates containing hydroxyl and carboxylic acid groups revealed solid state associated structures through inter-molecular hydrogen bond interactions. Trinuclear complex, [Pd3Cl2(mu-SeCH2CH2COOH)(4)(PnPr(3))(2)] (3a), was disposed in a boat form unlike chair conformation observed for the corresponding methylester complex. The effect of beta-functionality in ethylselenolate ligands towards reactivity, structures and thermal properties of palladium and platinum complexes has been extensively Studied.
Resumo:
A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of similar to 2 nm, while silver particles have 4-5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.
Resumo:
Deviations from the usual R (-6) dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non R (-6) type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene,two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube. We use simple analytic models to understand the distance dependence in each case.
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
Polarization of ligand fluorescence was used to study the binding of 4-methylumbelliferyl beta-D-galactopyranoside (MeUmb-Galp) to Abrus precatorious agglutinin. The binding of the fluorescent sugar to the lectin led to considerable polarization of the MeUmb-Galp fluorescence, which was also quenched by about 30% on binding to the lectin. The binding of the fluorescent sugar was carbohydrate-specific, as evidenced by inhibition of both fluorescence polarization and quenching when lectin was preincubated with lactose. The association constant as determined by fluorescence polarization is 1.42 x 10(4) M-1 at 25 degrees C and is in excellent agreement with those determined by fluorescence quenching (Ka = 1.51 x 10(4) M-1) and equilibrium dialysis (Ka = 1.62 x 10(4) M-1) at 25 degrees C. The numbers of binding sites as determined by fluorescence polarization, quenching and equilibrium dialysis agree very well with one another, n being equal to 2.0 +/- 0.05. The consistency between the association constant value determined by fluorescence polarization, quenching and equilibrium dialysis shows the validity of this approach to study lectin-sugar interaction.