995 resultados para pure titanium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contact load-bearing response and surface damage resistance of multilayered hierarchical structured (MHSed) titanium were determined and compared to monolithic nanostructured titanium. The MHS structure was formed by combining cryorolling with a subsequent Surface Mechanical Attrition Treatment (SMAT) producing a surface structure consisted of an outer amorphous layer containing nanocrystals, an inner nanostructured layer and finally an ultra-fine grained core. The combination of a hard outer layer, a gradual transition layer and a compliant core results in reduced indentation depth, but a deeper and more diffuse sub-surface plastic deformation zone, compared to the monolithic nanostructured Ti. The redistribution of surface loading between the successive layers in the MHS Ti resulted in the suppression of cracking, whereas the monolithic nanograined (NG) Ti exhibited sub-surface cracks at the boundary of the plastic strain field. Finite element models with discrete layers and mechanically graded layersrepresenting the MHS system confirmed the absence of cracking and revealed a 38% decrease in shear stress in the sub-surface plastic strain field, compared to the monolithic NG Ti. Further, the mechanical gradation achieves a more gradual stress distribution which mitigates the interface failure and increases the interfacial toughness, thus providing strong resistance to loading damage. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium-strontia (Ti-SrO) metal matrix composites (MMCs) with 0, 1, 3 and 5% (weight ratio) of SrO have been fabricated through the powder metallurgy method. Increasing the weight ratio of SrO from 0 to 5%, the compressive strength of Ti-SrO MMCs increased from 982 MPa to 1753 MPa, while the ultimate strain decreased from 0.28 to 0.05. The elastic moduli of Ti-3SrO and Ti-5SrO MMCs were higher than those of Ti and Ti-1SrO MMC samples. Additionally, the micro hardness of Ti-SrO MMCs was enhanced from 59% to 190% with the addition of SrO. The enhanced compression strength and micro hardness of Ti-SrO MMCs were attributed to the Hall-Petch effect and the SrO dispersion strengthening in the Ti matrix. MTS assay results demonstrated that Ti-SrO MMCs with 3% SrO exhibited enhanced proliferation of osteoblast-like cells. Alkaline phosphatase activity of cells was not influenced significantly on the surface of Ti-SrO MMCs compared with pure Ti in a term longer than 10 days. The cell morphology on the Ti-SrO MMCs was observed using confocal microscopy and scanning electron microscopy, which confirmed that the Ti-3%SrO MMCs showed optimal in vitro biocompatibility. This journal is © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this article is to investigate the drilling of carbon fiber-reinforced plastic (CFRP) composite/metal stack-ups to have a details picture of the developments in this complex area. The forces and torque, chip shape, surface finish and geometry, and tool material and tool wear for drilling composite/metal stack-ups have been analyzed in details in addition to drilling mechanism of CFRP. The relation between input and output parameters was discussed and the trend of input parameters for damage free and tight tolerance holes has been investigated based on the literature. The main findings are (i) heat, built-up edge and chips generated from drilling of metallic layers damages CFRP surface, (ii) order of material layers affects the drilling outcomes significantly, (iii) coatings and step-shape on the cutting tool improves the tool performance, (iv) tool materials should be selected based on the material of metallic layer, (v) chipping, adhesion, abrasion and attrition are main tool wear mechanisms during machining of CFRP/metal stacks and (vi) application of coolant improves the machinability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys are of great demand in the aerospace and biomedical industries. Most the titanium products are either cast or sintered to required shape and finish machined to get the appropriate surface texture to meet the design requirements. Ti-6Al-4V is often referred as work horse among the titanium alloys due to its heavy use in the aerospace industry. This paper is an attempt to investigate and improve the machining performance of Ti-6Al-4V. Thin wall machining is an advance machining technique especially used in machining turbine blades which can be done both in a conventional way and using a special technique known as trochoidal milling. The experimental design consists of conducting trials using combination of cutting parameters such as cutting speed (vc), 90 and 120 m/min; feed/tooth (fz) of 0.25 and 0.35 mm/min; step over (ae) 0.3 and 0.2; at constant depth of cut (ap) 20mm and using coolant. A preliminary assessment of machinability of Ti-6Al-4V during thin wall machining using trochoidal milling is done. A correlation established using cutting force, surface texture and dimensional accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is dedicated to the quantification of latent hardening and its effect on the plasticity of pure hexagonal magnesium. To this end, discrete dislocation dynamics simulations are used to (1) extract latent hardening parameters coupling different slip systems, and to (2) assess the validity of two existing constitutive models linking slip system strength to dislocation densities on all slip systems. As hexagonal materials deform via activation of different slip modes, each with different mobilities and lattice friction stress, the effects of the latter on latent hardening evolution are also investigated. It is found that the multi-slip formulation proposed by Franciosi and Zaoui gives accurate predictions when multiple interactions are involved while the formulation suggested by Lavrentev and Pokhil systematically overestimates the flow stress. Similar to FCC materials, it is also found that collinear interactions potentially contribute the most to latent hardening. Basal/pyramidal c + a interactions are found to be very strong, while interactions involving second-order pyramidal c + a primary dislocations appear to be the weakest ones. Finally, the latent hardening parameters, extracted from the discrete dislocation dynamics simulations, are used in polycrystal simulations and the impact of finely accounting for latent hardening on predictions of the macroscopic anisotropic response is shown to be of significant importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The remarkable physical properties of ionic liquids (ILs) make them potentially excellent lubricants. One of the challenges for using ILs as lubricants is their high cost. In this article, atomic force microscopy (AFM) nanotribology measurements reveal that a 1 mol % solution of IL dissolved in an oil lubricates the silica surface as effectively as the pure IL. The adsorption isotherm shows that the IL surface excess need only be approximately half of the saturation value to prevent surface contact and effectively lubricate the sliding surfaces. Using ILs in this way makes them viable for large-scale applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulation was employed to study the atomic interactions in titanium carbides and iron matrix containing carbon and titanium, which are significant for understanding the formation of titanium carbide cluster during precipitate process. The atoms trajectory and diffusion coefficients of carbon in titanium carbide were analyzed to provide a vacancy-exchanging mechanism and clarify the carbon concentration dependence of carbon diffusion in titanium carbide. The dependence of the formation of titanium carbide cluster in iron matrix on carbon was determined from the study of atoms diffusivity, cluster formation and formation energy of titanium carbide cluster. The simulation results provided insight into the carbon diffusion process and improved the understanding of the formation of titanium carbide cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing interest in developing devices that can be implantable or wearable requires the identification of suitable materials for the components of these devices. Electrochemical supercapacitors are not the exception in this trend, and identifying electrode materials that can be not only suitable for the capacitive device but also biocompatible at the same time is important. In addition, it would be advantageous if physiological fluids could be used instead of more conventional (and often corrosive) electrolytes for implantable or wearable supercapacitors. In this study, we assess the biocompatibility of films of anodized TiO2 nanotubes subjected to the subsequent annealing in Ar atmosphere and evaluate their capacitive performance in a physiological liquid. A biocompatibility test tracking cell proliferation on TiO2 nanotube electrodes and electrochemical tests in 0.01 M phosphate-buffered saline solution are discussed. It is expected that the study will stimulate further developments in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium and its alloys are excellent candidates for biomedical implant. However, they exhibit relatively poor tribological properties. In this study, a two-step treatment including surface mechanical attrition treatment (SMAT) combined with thermal oxidation process has been developed to improve the tribological properties and biocompatibility of Ti. Ti after two-step treatment shows excellent wear-resistance and biocompatibility among all Ti samples, which can be ascribed to the highest surface energy, well crystallinity of rutile layer on its surface. Overall, the two-step treatment is a prospective method to produce excellent biomedical Ti materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloy (Ti-6Al-4V) has a wide range of application in various fields of engineering. Titanium is mainly used to manufacture aerospace components like landing gear, fuselage, wings, engines etc. and biomedical components like hip joint, knee joint, dental implants etc. Titanium has outstanding material properties such as corrosion resistance, fatigue strength, tensile strength and a very good biocompatibility which makes this material very alluring for biomedical applications. Contrary, the machinability of the material is problematic because of the phase transformations and thus, titanium alloy is a challenge for machining operation. This research is a comparative analysis between the implants manufactured by traditional method of casting and machining. The femoral stem of the hip joint replacement is designed and the component is machined using a five-axis CNC machine.The machined component was subjected to surface roughness testing, tensile testing and bulk hardness testing. The values were compared with the values of titanium implants manufactured by casting. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qi developed a novel thermomechanical processing route for the grain refinement of titanium alloys. This leads to a well-balanced superior mechanical property, which is vital for modern air transport. The outcomes of this project are prospective to enhance titanium application and the long-term viability of Australian resources and manufacturing industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jared Diamond asked the acclaimed evolutionary biologist Ernst Mayr (1904-2005) why Aristotle didn’t come up with the theory of evolution. Mayr’s answer was ‘Frage stellen’ which Diamond translates as ‘a way of asking questions [sic]’ (Byrne 2013). The idea that a particular way-of-asking might generate a particular way-of-knowing and, indeed, a particular branch-of-knowledge, is utterly intriguing, especially when we frame the practice of creative writing in those terms: as a way of asking questions.Drusilla Modjeska unpacks the concept of ‘temporising’ in her article ‘Writing Poppy’ (Modjeska 2002: 75). This discussion invites us to consider the generative capabilities of the temporising space – as an imaginative space for writers, as an alternate way of asking questions … of seeing, being, knowing. In narrative, the questions that underpin the work do not necessarily appear in the surface-content of the text. In this way, the story is a metaphorical representation of the questions that lie beneath. As Aristotle suggests, metaphor relies on ‘an intuitive perception of the similarity [to homoion theorein] in dissimilars’ (Ricoeur 1977: 23). In narrative we contemplate a question, or an idea, within the context of a metaphorical other. This is a form of temporising: of ‘slip[ping] into other time frames’ as a means of ‘retreat[ing] and consider[ing]’ (Modjeska 2002: 75, 76). In narrative time, we consider one thing through an alternate temporal lens. We prevaricate in otherness.Fiction-making represents a very particular way of asking questions. With reference to the process of writing the short story – ‘Everything that matters is silvery white’ – it is clear that ‘making’ narrative is a way of asking questions that is assisted by the transformative temporising space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, strontium (Sr) and surface modification were used to improve the
biocompatibility of titanium (Ti) based implant materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study contrasts the extent to which laboratory and industrial scale variants of equal channel angular pressing (ECAP) impart desirable microstructures and mechanical properties in Grades 2 and 4 titanium. Industrial-scale ECAP-Conform (ECAP-C) with post-ECAP thermo-mechanical processing (TMP) enhanced performance levels beyond those achieved with the same material processed in the laboratory by ECAP only. ECAP-C processed titanium demonstrated exceptional tensile properties and fatigue strength, superior even to conventional Ti-6Al-4V.