957 resultados para public bodies
Resumo:
A study of transpiration cooling of blunt bodies such as a hemicylinder is made by solving Navier-Stokes equations. An upwind, implicit time-marching code is developed for this purpose. The study is conducted for both perfect-gas and real-gas (chemical equilibrium) flows. Investigations are carried out for a special wall condition that is referred to as no heat flow into the wall condition. The effects of air injection on wall temperature are analyzed. Analyses are carried out for Mach numbers ranging between 6-10 and Reynolds numbers ranging between 10(6)-10(7). Studies are made for spatially constant as well as spatially varying mass injection rate distributions, White cold air injection reduces the wall temperature substantially, transpiration cooling is relatively less effective when the gas is in chemical equilibrium.
Resumo:
A three-component accelerometer balance system is used to study the drag reduction effect of an aerodisc on large angle blunt cones flying at hypersonic Mach numbers. Measurements in a hypersonic shock tunnel at a freestream Mach number of 5.75 indicate more than 50% reduction in the drag coefficient for a 120degrees apex angle blunt cone with a forward facing aerospike having a flat faced aerodisc at moderate angles of attack. Enhancement of drag has been observed for higher angles of attack due to the impingement of the flow separation shock on the windward side of the cone. The flowfields around the large angle blunt cone with aerospike assembly flying at hypersonic Mach numbers are also simulated numerically using a commercial CFD code. The pressure and density levels on the model surface, which is under the aerodynamic shadow of the flat disc tipped spike, are found very low and a drag reduction of 64.34% has been deduced numerically.
Resumo:
The restoration, conservation and management of water resources require a thorough understanding of what constitutes a healthy ecosystem. Monitoring and assessment provides the basic information on the condition of our waterbodies. The present work details the study carried out at two waterbodies, namely, the Chamarajasagar reservoir and the Madiwala Lake. The waterbodies were selected on the basis of their current use and locations. Chamarajasagar reservoir serves the purpose of supplying drinking water to Bangalore city and is located on the outskirts of the city surrounded by agricultural and forest land. On the other hand, Madiwala lake is situated in the heart of Bangalore city receiving an influx of pollutants from domestic and industrial sewage. Comparative assessment of the surface water quality of both were carried out by instituting the various physico–chemical and biological parameters. The physico-chemical analyses included temperature, transparency, pH, electrical conductivity, dissolved oxygen, alkalinity, total hardness, calcium hardness, magnesium hardness, nitrates, phosphates, sodium, potassium and COD measurements of the given waterbody. The analysis was done based on the standard methods prescribed (or recommended) by (APHA) and NEERI. The biological parameter included phytoplankton analysis. The detailed investigations of the parameters, which are well within the tolerance limits in Chamarajasagar reservoir, indicate that it is fairly unpolluted, except for the pH values, which indicate greater alkalinity. This may be attributed to the natural causes and the agricultural runoff from the catchment. On the contrary, the limnology of Madiwala lake is greatly influenced by the inflow of sewage that contributes significantly to the dissolved solids of the lake water, total hardness, alkalinity and a low DO level. Although, the two study areas differ in age, physiography, chemistry and type of inflows, they still maintain a phytoplankton distribution overwhelmingly dominated by Cyanophyceae members,specifically Microcystis aeruginosa. These blue green algae apparently enter the waterbodies from soil, which are known to harbour a rich diversity of blue green flora with several species common to limnoplankton, a feature reported to be unique to the south Indian lakes.Chamarajasagar water samples revealed five classes of phytoplankton, of which Cyanophyceae (92.15 percent) that dominated other algal forms comprised of one single species of Microcystis aeruginosa. The next major class of algae was Chlorophyceae (3.752 percent) followed by Dinophyceae (3.51 percent), Bacillariophyceae (0.47 percent) and a sparsely available and unidentified class (0.12 percent).Madiwala Lake phytoplankton, in addition to Cyanophyceae (26.20 percent), revealed a high density of Chlorophyceae members (73.44 percent) dominated by Scenedesmus sp.,Pediastrum sp., and Euglena sp.,which are considered to be indicators of organic pollution. The domestic and industrial sewage, which finds its way into the lake, is a factor causing organic pollution. As compared to the other classes, Euglenophyceae and Bacillariophyceae members were the lowest in number. Thus, the analysis of various parameters indicates that Chamarajasagar reservoir is relatively unpolluted except for the high percentage of Microcystis aeruginosa, and a slightly alkaline nature of water. Madiwala lake samples revealed eutrophication and high levels of pollution, which is clarified by the physico–chemical analysis, whose values are way above the tolerance limits. Also, the phytoplankton analysis in Madiwala lake reveals the dominance of Chlorophyceae members, which indicate organic pollution (sewage being the causative factor).
Resumo:
Obtaining correctly folded proteins from inclusion bodies of recombinant proteins expressed in bacterial hosts requires solubilization with denaturants and a refolding step. Aggregation competes with the second step. Refolding of eight different proteins was carried out by precipitation with smart polymers. These proteins have different molecular weights, different number of disulfide bridges and some of these are known to be highly prone to aggregation. A high throughput refolding screen based upon fluorescence emission maximum around 340 nm (for correctly folded proteins) was developed to identify the suitable smart polymer. The proteins could be dissociated and recovered after the refolding step. The refolding could be scaled up and high refolding yields in the range of 8 mg L-1 (for CD4D12, the first two domains of human CD4) to 58 mg L-1 (for malETrx, thioredoxin fused with signal peptide of maltose binding protein) were obtained. Dynamic light scattering (DLS) showed that polymer if chosen correctly acted as a pseuclochaperonin and bound to the proteins. It also showed that the time for maximum binding was about 50 min which coincided with the time required for incubation (with the polymer) before precipitation for maximum recovery of folded proteins. The refolded proteins were characterized by fluorescence emission spectra, circular dichroism (CD) spectroscopy, melting temperature (T-m), and surface hydrophobicity measurement by ANS (8-anilinol-naphthalene sulfonic acid) fluorescence. Biological activity assay for thioredoxin and fluorescence based assay in case of maltose binding protein (MBP) were also carried out to confirm correct refolding. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A linkage of rigid bodies under gravity loads can be statically counter-balanced by adding compensating gravity loads. Similarly, gravity loads or spring loads can be counterbalanced by adding springs. In the current literature, among the techniques that add springs, some achieve perfect static balance while others achieve only approximate balance. Further, all of them add auxiliary bodies to the linkage in addition to springs. We present a perfect static balancing technique that adds only springs but not auxiliary bodies, in contrast to the existing techniques. This technique can counter-balance both gravity loads and spring loads. The technique requires that every joint that connects two bodies in the linkage be either a revolute joint or a spherical joint. Apart from this, the linkage can have any number of bodies connected in any manner. In order to achieve perfect balance, this technique requires that all the spring loads have the feature of zero-free-length, as is the case with the existing techniques. This requirement is neither impractical nor restrictive since the feature can be practically incorporated into any normal spring either by modifying the spring or by adding another spring in parallel. DOI: 10.1115/1.4006521]
Resumo:
Urban water bodies frequently receive untreated sewage and water levels in such water bodies are maintained by daily inputs of sewage. They function as “variable-zone” anaerobic-aerobic lagoons suffering several macrophyte, biotic and abiotic stresses. We have studied two such lakes in Bangalore (Bellandur-360 ha and Varthur-220 ha) to understand whether such an occurrence could be made beneficial (maintaining water levels as well as treatment). Such hypertrophic water body receives sewage at 180-250mg/L and is discharged at 25-80mg/L COD/BOD in different seasons. In an earlier study we reported macrophyte altering the purification function of the water body. In this paper we studied the impact of phytoplankton dynamics and macrophyte cover on the functions such as organic load removal. Algal community analysis, algal biomass, macrophyte cover, water quality, nutrient status was studied seasonally during 2009-2010. Oxygen deficiency and sometimes anoxia, recorded from surface samples resulted in high quantities of NH4+-N (30-40mg/L) and phosphate (0.5-4mg/L)-characteristics of anoxic hypertrophic urban lakes. The productiveness favoured high phytoplanktonic community characterized by small cells (<10μm; Chlorella sp. - highest numbers). The lake could be clearly demarcated into an initial anaerobic zone (40% area), a facultative zone (20%) and an aerobic zone (40%) based on redox values and GIS/bathymetry. During summer the lake is covered by floating macrophytes converting the lake into an anoxic/anaerobic water pool subduing the water purification function as well as aesthetics. When macrophytes are controlled such sewage fed water bodies can be used for treating urban wastewater while also maintaining water sustainability in these semi-arid ecosystems. This paper reports the community dynamics of phytoplankton, their function and competition with macrophytes.
Resumo:
The signal peptide plays a key role in targeting and membrane insertion of secretory and membrane proteins in both prokaryotes and eukaryotes. In E. coli, recombinant proteins can be targeted to the periplasmic space by fusing naturally occurring signal sequences to their N-terminus. The model protein thioredoxin was fused at its N-terminus with malE and pelB signal sequences. While WT and the pelB fusion are soluble when expressed, the malE fusion was targeted to inclusion bodies and was refolded in vitro to yield a monomeric product with identical secondary structure to WT thioredoxin. The purified recombinant proteins were studied with respect to their thermodynamic stability, aggregation propensity and activity, and compared with wild type thioredoxin, without a signal sequence. The presence of signal sequences leads to thermodynamic destabilization, reduces the activity and increases the aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, signal sequences can modulate protein stability and aggregation in a sequence dependent manner.
Resumo:
The high level of public accountability attached to Public Sector Enterprises as a result of public ownership makes them socially responsible. The Committee of Public Undertakings in 1992 examined the issue relating to social obligations of Central Public Sector Enterprises and observed that ``being part of the `State', every Public Sector enterprise has a moral responsibility to play an active role in discharging the social obligations endowed on a welfare state, subject to the financial health of the enterprise''. It issued the Corporate Social Responsibility Guidelines in 2010 where all Central Public Enterprises, through a Board Resolution, are mandated to create a CSR budget as a specified percentage of net profit of the previous year. This paper examines the CSR activities of the biggest engineering public sector organization in India, Bharath Heavy Electricals Limited. The objectives are twofold, one, to develop a case study of the organization about the funds allocated and utilized for various CSR activities, and two, to examine its status with regard to other organizations, the 2010 guidelines, and the local socio-economic development. Secondary data analysis results show three interesting trends. One, it reveals increasing organizational social orientation with the formal guidelines in place. Two, Firms can no longer continue to exploit environmental resources and escape from their responsibilities by acting separate entities regardless of the interest of the society and Three the thrust of CSR in public sector is on inclusive growth, sustainable development and capacity building with due attention to the socio-economic needs of the neglected and marginalized sections of the society.
Resumo:
P bodies are 100-300 nm sized organelles involved in mRNA silencing and degradation. A total of 60 human proteins have been reported to localize to P bodies. Several human SNPs contribute to complex diseases by altering the structure and function of the proteins. Also, SNPs alter various transcription factors binding, splicing and miRNA regulatory sites. Owing to the essential functions of P bodies in mRNA regulation, we explored computationally the functional significance of SNPs in 7 P body components such as XRN1, DCP2, EDC3, CPEB1, GEMIN5, STAU1 and TRIM71. Computational analyses of non-synonymous SNPs of these components was initiated using well utilized publicly available software programs such as the SIFT, followed by PolyPhen, PANTHER, MutPred, I-Mutant-2.0 and PhosSNP 1.0. Functional significance of noncoding SNPs in the regulatory regions were analysed using FastSNP. Utilizing miRSNP database, we explored the role of SNPs in the context that alters the miRNA binding sites in the above mentioned genes. Our in silico studies have identified various deleterious SNPs and this cataloguing is essential and gives first hand information for further analysis by in vitro and in vivo methods for a better understanding of maintenance, assembly and functional aspects of P bodies in both health and disease. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we have proposed a novel certificate-less on-demand public key management (CLPKM) protocol for self-organized MANETs. The protocol works on flat network architecture, and distinguishes between authentication layer and routing layer of the network. We put an upper limit on the length of verification route and use the end-to-end trust value of a route to evaluate its strength. The end-to-end trust value is used by the protocol to select the most trusted verification route for accomplishing public key verification. Also, the protocol uses MAC function instead of RSA certificates to perform public key verification. By doing this, the protocol saves considerable computation power, bandwidth and storage space. The saved storage space is utilized by the protocol to keep a number of pre-established routes in the network nodes, which helps in reducing the average verification delay of the protocol. Analysis and simulation results confirm the effectiveness of the proposed protocol.