995 resultados para play as a tool
Resumo:
Animal communities are sensitive to environmental disturbance, and several multivariate methods have recently been developed to detect changes in community structure. The complex taxonomy of soil invertebrates constrains the use of the community level in monitoring environmental changes, since species identification requires expertise and time. However, recent literature data on marine communities indicate that little multivariate information is lost in the taxonomic aggregation of species data to high rank taxa. In the present paper, this hypothesis was tested on two oribatid mite (oribatida, Acari) assemblages under two different kinds of disturbance: metal pollution and fires. Results indicate that data sets built at the genus and family systematic rank can detect the effects of disturbance with little loss of information. This is an encouraging result in view of the use of the community level as a preliminary tool for describing patterns of human-disturbed soil ecosystems. (c) 2006 Elsevier SAS. All rights reserved.
Resumo:
Silicon carbide (SiC) is a material of great technological interest for engineering applications concerning hostile environments where silicon-based components cannot work (beyond 623 K). Single point diamond turning (SPDT) has remained a superior and viable method to harness process efficiency and freeform shapes on this harder material. However, it is extremely difficult to machine this ceramic consistently in the ductile regime due to sudden and rapid tool wear. It thus becomes non trivial to develop an accurate understanding of tool wear mechanism during SPDT of SiC in order to identify measures to suppress wear to minimize operational cost.
In this paper, molecular dynamics (MD) simulation has been deployed with a realistic analytical bond order potential (ABOP) formalism based potential energy function to understand tool wear mechanism during single point diamond turning of SiC. The most significant result was obtained using the radial distribution function which suggests graphitization of diamond tool during the machining process. This phenomenon occurs due to the abrasive processes between these two ultra hard materials. The abrasive action results in locally high temperature which compounds with the massive cutting forces leading to sp3–sp2 order–disorder transition of diamond tool. This represents the root cause of tool wear during SPDT operation of cubic SiC. Further testing led to the development of a novel method for quantitative assessment of the progression of diamond tool wear from MD simulations.
Resumo:
Background: There are many issues regarding the use of real patients in objective structured clinical examinations (OSCEs). In dermatology OSCE stations, standardised patients (SPs) with clinical photographs are often used. Temporary transfer tattoos can potentially simulate skin lesions when applied to an SP. This study aims to appraise the use of temporary malignant melanoma tattoos within an OSCE framework. Method: Within an 11-station OSCE, a temporary malignant melanoma tattoo was developed and applied to SPs in a 'skin lesion' OSCE station. A questionnaire captured the opinions of the candidate, SP and examiners, and the degree of perceived realism of each station was determined. Standard post hoc OSCE analysis determined the psychometric reliability of the stations. Results: The response rates were 95.9 per cent of candidates and 100 per cent of the examiners and SPs. The 'skin lesion' station achieved the highest realism score compared with other stations: 89.0 per cent of candidates felt that the skin lesion appeared realistic; only 28 per cent of candidates had ever seen a melanoma before in training. The psychometric performance of the melanoma station was comparable with, and in many instances better than, other OSCE stations. Discussion: Transfer tattoo technology facilitates a realistic dermatology OSCE station encounter. Temporary tattoos, alongside trained SPs, provide an authentic, standardised and reliable experience, allowing the assessment of integrated dermatology clinical skills.
Resumo:
Au nanoparticles (AuNPs) have been widely used not only as optical labels or ‘weight” labels for the detections of biorecognition events but also an amplifier of surface plasmon resonance biosensors. The intrinsic property of gold nuclei composing of a group of Au atoms to catalyze the reduction of metal ions on the NPs and thereby to enlarge the metallic nanoparticles is employed in different biosensing paths. In a solution containing Au+ ions (e.g. HAuCl4) and the Au clusters, hydrated electrons which are reduced from oxidation of reducers (H2O2, sodium citrate, ascorbic acid, or NaBH4) will be used to reduce the Au+ ion leading to the deposition of Au+ to the Au0 (Au clusters). The reaction will be catalyzed continuously by the Au0 until the Au+ ions and hydrated electrons are exhausted. As a result, the AuNPs will be grown and their optical properties are also changed. If the AuNP nanoclusters are used as probes, the color change will be dependent on amount of analytes, thus give a quantitative monitoring of the analytes.
In this study, we incorporate the use of magnetic beads with the nanocrystalline growth to quantify a target protein based on immunoreactions. Prostate specific antigen (PSA) is chosen as the target analyte because of its values in diagnosis of prostate cancer. A double-sandwiched immunoassay is performed by gold-tagged monoclonal PSA antibody-PSA antigen – magnetic bead-tagged polyclonal PSA antibody interactions. After the immunoreactions, the target analytes are preconcentrated and separated by the magnetic beads while the nanogrowth plays a role of colorimetric signal developer.
The result shows that this is a very sensitive, robust and excellent strategy to detect biological interactions. PSA antigen is detected at femtomolar level with very high specificity under the presence of undesired proteins of crude samples. Furthermore, the method also shows great potential to detect other biological interactions. More details will be described in our presentation.
Resumo:
Here we describe the development of the MALTS software which is a generalized tool that simulates Lorentz Transmission Electron Microscopy (LTEM) contrast of magnetic nanostructures. Complex magnetic nanostructures typically have multiple stable domain structures. MALTS works in conjunction with the open access micromagnetic software Object Oriented Micromagnetic Framework or MuMax. Magnetically stable trial magnetization states of the object of interest are input into MALTS and simulated LTEM images are output. MALTS computes the magnetic and electric phases accrued by the transmitted electrons via the Aharonov-Bohm expressions. Transfer and envelope functions are used to simulate the progression of the electron wave through the microscope lenses. The final contrast image due to these effects is determined by Fourier Optics. Similar approaches have been used previously for simulations of specific cases of LTEM contrast. The novelty here is the integration with micromagnetic codes via a simple user interface enabling the computation of the contrast from any structure. The output from MALTS is in good agreement with both experimental data and published LTEM simulations. A widely-available generalized code for the analysis of Lorentz contrast is a much needed step towards the use of LTEM as a standardized laboratory technique.
Resumo:
This article reports on the development of an iPhone-based brain-exercise tool for seniors involving a series of focus groups (FGs) and field trials (FTs). Four FGs with 34 participants were conducted aimed at understanding the underlying motivational and de-motivational factors influencing seniors’ engagement with mobile brain-exercise software. As part of the FGs, participants had approximately 40 minutes hands-on experience with commercially available brain-exercise software. A content analysis was conducted on the data resulting in a ranking of 19 motivational factors, of which the top three were challenge, usefulness and familiarity and 15 de-motivational factors, of which the top-three were usability issues, poor communication and games that were too fast. Findings were used to inform the design of three prototype brain-exercise games for the iPhone contained within one overall application, named Brain jog. Subsequently, two FTs were conducted using Brain jog to investigate the part that time exposure has to play in shaping the factors influencing engagement. New factors arose with respect to the initial FGs including the motivational factor feedback and the de-motivational factor boring. The results of this research provide valuable guidelines for the design and evaluation of mobile brain-exercise software for seniors.
Resumo:
In 2000–2002 an innovative early years curriculum, the Enriched Curriculum (EC), was introduced
into 120 volunteer schools across Northern Ireland, replacing a traditional curriculum similar to
others across the UK at that time. It was intended by the designers to be developmentally appropriate
and play-based with the primary goal of preventing the experience of persistent early failure in
children. The EC was not intended to be a literacy and numeracy intervention, yet it did considerably
alter pedagogy in these domains, particularly the age at which formal reading and mathematics
instruction began. As part of a multi-method evaluation running from 2000–2008, the research
team followed the primary school careers of the first two successive cohorts of EC children, comparing
them with year-ahead controls attending the same 24 schools. Compared to the year-ahead control
group, the findings show that the EC children’s reading and mathematics scores fell behind in
the first two years but the majority of EC children caught up by the end of their fourth year. Thereafter,
the performance of the first EC cohort fell away slightly, while that of the second continued to
match that of controls. Overall, the play-based curriculum had no statistically significant positive
effects on reading and mathematics in the medium term. At best, the EC children’s scores matched
those of controls.
Resumo:
The basic helix-loop-helix protein achaete-scute homolog-1 (ASH1) is involved in lung neuroendocrine (NE) differentiation and tumor promotion in SV40 transgenic mice. Constitutive expression of human ASH-1 (hASH1) in mouse lung results in hyperplasia and remodeling that mimics bronchiolization of alveoli (BOA), a potentially premalignant lesion of human lung carcinomas. We now show that this is due to sustained cellular proliferation in terminal bronchioles and resistance to apoptosis. Throughout the airway epithelium the expression of anti-apoptotic Bcl-2 and c-Myb was increased and Akt/mTOR pathway activated. Moreover, the expression of matrix metalloproteases (MMPs) including MMP7 was specifically enhanced at the bronchiolo-alveolar duct junction and BOA suggesting that MMPs play a key role in this microenvironment during remodeling. We also detected MMP7 in 70% of human BOA lesions. Knockdown of hASH1 gene in human lung cancer cells in vitro suppressed growth by increasing apoptosis. We also show that forced expression of hASH1 in immortalized human bronchial epithelial cells decreases apoptosis. We conclude that the impact of hASH1 is not limited to cells with NE phenotype. Rather, constitutive expression of hASH1 in lung epithelium promotes remodeling through multiple pathways that are commonly activated during lung carcinogenesis. The collective results suggest a novel model of BOA formation via hASH1-induced suppression of the apoptotic pathway. Our study yields a promising new preclinical tool for chemoprevention of peripheral lung carcinomas. © 2007 USCAP, Inc All rights reserved.
Resumo:
Tetrodotoxin (TTX) is a potent neurotoxin emerging in European waters due to increasing ocean temperatures. Its detection in seafood is currently performed as a consequence of using the Association of Analytical Communities (AOAC) mouse bioassay (MBA) for paralytic shellfish poisoning (PSP) toxins, but TTX is not monitored routinely in Europe. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. An AOAC-accredited high-performance liquid chromatography (HPLC) method has now been accepted by the European Union as a first action screening method for PSP toxins to replace the MBA. However, this AOAC HPLC method is not capable of detecting TTX, so this potent toxin would be undetected; thereby, a separate method of analysis is required. Surface plasmon resonance (SPR) optical biosensor technology has been proven as a potential alternative screening method to detect PSP toxins in seafood. The addition of a similar SPR inhibition assay for TTX would complement the PSP assay in removing the MBA. The present report describes the development and single laboratory validation in accordance with AOAC and IUPAC guidelines of an SPR method to be used as a rapid screening tool to detect TTX in the sea snail Charonia lampas lampas, a species which has been implicated in 2008 in the first case of human TTX poisoning in Europe. As no current regulatory limits are set for TTX in Europe, single laboratory validation was undertaken using those for PSP toxins at 800 µg/kg. The decision limit (CCa) was 100 µg/kg, with the detection capability (CCß) found to be =200 µg/kg. Repeatability and reproducibility were assessed at 200, 400, and 800 µg/kg and showed relative standard deviations of 8.3, 3.8, and 5.4 % and 7.8, 8.3, and 3.7 % for both parameters at each level, respectively. At these three respective levels, the recovery of the assay was 112, 98, and 99 %.