980 resultados para plant diversity
Resumo:
The present study aimed to characterize the extracts prepared from Pimpinella anisum L. (anise) and Coriandrum sativum L. (coriander) (Apiaceae plants) seeds in terms of phenolic composition, and to correlate the obtained profiles with the antioxidant activity. Anise gave the highest abundance in phenolic compounds (42.09± 0.11 mg/g extract), mainly flavonoids (28.08±0.17 mg/g extract) and phenolic acids (14.01±0.06 mg/g extract), and also the highest antioxidant potential, accessed for the ability to inhibit lipid peroxidation and -carotene bleaching, reducing power and free radical scavenger activity. Apigenin and luteolin derivatives, as also caffeoylquinic acid derivatives appear to be directly related with the higher in vitro antioxidant potential of the anise extract.. In contrast, the weak antioxidant potential of coriander seems to be due to their lower abundance in phenolic compounds (2.24±0.01 mg/g extract). Further studies are necessary to evaluate the in vivo antioxidant potential of the tested extracts, but the performed in vitro experiments highlight them as potential health promoters.
Resumo:
This paper aimed to evaluate the richness, abundance and frequency of sand fly occurrence in rural and urban areas American visceral Leishmaniasis -AVL is endemic in the study area of Santarém municipality, Pará state. Sand flies were collected during 1995-2000, using CDC light traps placed in neighborhoods and rural areas of the municipality. A total of 53.454 individuals and 26 species of sand flies were collected. The most abundant species in both urban and rural environments was Lutzomyia longipalpis, vector of AVL in the area. The highest species richness by capture was in rural area. In all years sampled, the largest number of species of sand fly collected was always in rural areas. The species of sand flies in urban and rural area were similar in 11 species. In the rural area other 11 species were found, a total of 22 species. Shannon-Wiener index ranged from 0.12 to 0.84 at rural areas and 0.08 to 0.34 at urban ones. In general, rural localities showed higher diversity (H') of phlebotomines than urban ones. Individual-based rarefaction curves for each area demonstrated that urban localities had the lowest expected number of phlebotomine species and the richest rural ones reach higher expected values with lower amount of individuals than urban sites. The most frequent species were Lutzomyia longipalpis, Evandromyia carmelinoi and Bichromomyia flaviscutellata.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Nutrient recycling in the forest is linked to the production and decomposition of litter, which are essential processes for forest maintenance, especially in regions of nutritionally poor soils. Human interventions in forest such as selecttive logging may have strong impacts on these processes. The objectives of this study were to estimate litterfall production and evaluate the influence of environmental factors (basal area of vegetation, plant density, canopy cover, and soil physicochemical properties) and anthropogenic factors (post-management age and exploited basal area) on this production, in areas of intact and exploited forest in southern Amazonia, located in the northern parts of Mato Grosso state. This study was conducted at five locations and the average annual production of litterfall was 10.6 Mg ha-1 year-1, higher than the values for the Amazon rainforest. There were differences in litterfall productions between study locations. Effects of historical logging intensity on litterfall production were not significant. Effects of basal area of vegetation and tree density on litterfall production were observed, highlighting the importance of local vegetation characteristics in litterfall production. This study demonstrated areas of transition between the Amazonia-Cerrado tend to have a higher litterfall production than Cerrado and Amazonia regions, and this information is important for a better understanding of the dynamics of nutrient and carbon cycling in these transition regions.
Resumo:
Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas
Resumo:
Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas
Resumo:
ABSTRACT The Amazon forest is rich in plant species diversity, among them,Piranhea trifoliata stands out, which is popularly known as piranheira, because their fruits are eaten by fish. Their barks are used as bath composition on uterus inflammation and as tea in malaria treatment. This study aimed to fractionate the dichloromethane and dichloromethane phase from methanolic extract of leaves of Piranhea trifoliata. The leaves were dried, grounded and extracted with dichloromethane, methanol and water. The methanol extract was partitioned with dichloromethane and ethyl acetate. The chromatographic fractionation yielded six pentacyclic triterpenoids: friedelan-3-one, 28-hydroxy-friedelan-3-one, 30-hydroxy-friedelan-3-one, lupeol, α- and β-amyrin mixture, besides the mixture of the steroids: β-sitosterol and stigmasterol. The substances structures were identified by 1H- and13C-Nuclear Magnetic Resonance (NMR) analysis and literature data comparison. This is the first report describing the chemical study of P. trifoliata leaves.
Resumo:
Tese de Doutoramento em Biologia de Plantas
Resumo:
Invasive cervical cancer (ICC) is the third most frequent cancer among women worldwide and is associated with persistent infection by carcinogenic human papillomaviruses (HPVs). The combination of large populations of viral progeny and decades of sustained infection may allow for the generation of intra-patient diversity, in spite of the assumedly low mutation rates of PVs. While the natural history of chronic HPVs infections has been comprehensively described, within-host viral diversity remains largely unexplored. In this study we have applied next generation sequencing to the analysis of intra-host genetic diversity in ten ICC and one condyloma cases associated to single HPV16 infection. We retrieved from all cases near full-length genomic sequences. All samples analyzed contained polymorphic sites, ranging from 3 to 125 polymorphic positions per genome, and the median probability of a viral genome picked at random to be identical to the consensus sequence in the lesion was only 40%. We have also identified two independent putative duplication events in two samples, spanning the L2 and the L1 gene, respectively. Finally, we have identified with good support a chimera of human and viral DNA. We propose that viral diversity generated during HPVs chronic infection may be fueled by innate and adaptive immune pressures. Further research will be needed to understand the dynamics of viral DNA variability, differentially in benign and malignant lesions, as well as in tissues with differential intensity of immune surveillance. Finally, the impact of intralesion viral diversity on the long-term oncogenic potential may deserve closer attention.
Resumo:
Bacteriophages (phages), natural enemies of bacteria, can encode enzymes able to degrade polymeric substances. These substances can be found in the bacterial cell surface, such as polysaccharides, or are produced by bacteria when they are living in biofilm communities, the most common bacterial lifestyle. Consequently, phages with depolymerase activity have a facilitated access to the host receptors, by degrading the capsular polysaccharides, and are believed to have a better performance against bacterial biofilms, since the degradation of extracellular polymeric substances by depolymerases might facilitate the access of phages to the cells within different biofilm layers. Since the diversity of phage depolymerases is not yet fully explored, this is the first review gathering information about all the depolymerases encoded by fully sequenced phages. Overall, in this study, 160 putative depolymerases, including sialidases, levanases, xylosidases, dextranases, hyaluronidases, peptidases as well as pectate/pectin lyases, were found in 143 phages (43 Myoviridae, 47 Siphoviridae, 37 Podoviridae, and 16 unclassified) infecting 24 genera of bacteria. We further provide information about the main applications of phage depolymerases, which can comprise areas as diverse as medical, chemical, or food-processing industry.
Resumo:
Tese de Doutoramento em Biologia de Plantas MAP - Bioplant
Resumo:
Secondary metabolites from plants are important sources of high-value chemicals, many of them being pharmacologically active. These metabolites are commonly isolated through inefficient extractions from natural biological sources and are often difficult to synthesize chemically. Therefore, their production using engineered organisms has lately attracted an increased attention. Curcuminoids, an example of such metabolites, are produced in Curcuma longa and exhibit anti-cancer and anti-inflammatory activities. Herein we report the construction of an artificial biosynthetic pathway for the curcuminoids production in Escherichia coli. Different 4-coumaroyl-CoA ligases (4CL) and polyketide synthases (diketide-CoA synthase (DCS), curcumin synthase (CURS) and curcuminoid synthase) were tested. The highest curcumin production (70 mg/L) was obtained by feeding ferulic acid and with the Arabidopsis thaliana 4CL1 and C. longa DCS and CURS enzymes. Other curcuminoids (bisdemethoxy- and demethoxycurcumin) were also produced by feeding coumaric acid or a mixture of coumaric and ferulic acids, respectively. Curcuminoids, including curcumin, were also produced from tyrosine through the caffeic acid pathway. To produce caffeic acid, tyrosine ammonia lyase and 4-coumarate 3-hydroxylase were used. Caffeoyl-CoA O-methyltransferase was used to convert caffeoyl-CoA to feruloyl-CoA. This pathway represents an improvement of the curcuminoids heterologous production. The construction of this pathway in another model organism is being considered, as well as the introduction of alternative enzymes.
Resumo:
[Excerpt] Although Acinetobacter baumannii has been the main agent for healthcare infections, recent reports suggest that some Acinetobacter environmental species should be considered as a potential cause of disease. In Angola, there are no previous data on its environmental reservoirs and resistance features. We aimed to unveil the occurrence and diversity of Acinetobacter species and the presence of resistance mechanisms in different non-clinical settings in Angola.
Resumo:
Chlorine oxyanions are valuable electron acceptors for microorganisms. Recent findings have shed light on the natural formation of chlorine oxyanions in the environment. These suggest a permanent introduction of respective compounds on Earth, long before their anthropogenic manufacture. Microorganisms that are able to grow by the reduction of chlorate and perchlorate are affiliated with phylogenetically diverse lineages, spanning from the Proteobacteria to the Firmicutes and archaeal microorganisms. Microbial reduction of chlorine oxyanions can be found in diverse environments and different environmental conditions (temperature, salinities, pH). It commonly involves the enzymes perchlorate reductase (Pcr) or chlorate reductase (Clr) and chlorite dismutase (Cld). Horizontal gene transfer seems to play an important role for the acquisition of functional genes. Novel and efficient Clds were isolated from microorganisms incapable of growing on chlorine oxyanions. Archaea seem to use a periplasmic Nar-type reductase (pNar) for perchlorate reduction and lack a functional Cld. Chlorite is possibly eliminated by alternative (abiotic) reactions. This was already demonstrated for Archaeoglobus fulgidus, which uses reduced sulfur compounds to detoxify chlorite. A broad biochemical diversity of the trait, its environmental dispersal, and the occurrence of relevant enzymes in diverse lineages may indicate early adaptations of life toward chlorine oxyanions on Earth.