956 resultados para physical and mechanical assays


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti-Zr alloys have recently started to receive a considerable amount of attention as promising materials for dental applications. This work compares mechanical properties of a new Ti-15Zr alloy to those of commercially pure titanium Grade4 in two surface conditions - machined and modified by sand-blasting and etching (SLA). As a result of significantly smaller grain size in the initial condition (1-2µm), the strength of Ti-15Zr alloy was found to be 10-15% higher than that of Grade4 titanium without reduction in the tensile elongation or compromising the fracture toughness. The fatigue endurance limit of the alloy was increased by around 30% (560MPa vs. 435MPa and 500MPa vs. 380MPa for machined and SLA-treated surfaces, respectively). Additional implant fatigue tests showed enhanced fatigue performance of Ti-15Zr over Ti-Grade4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effect of alloying element content on mechanical properties and precipitate formation in Mg-RE alloys was studied for Mg-8Gd-4Y- 1Zn-0.4Zr (wt%) and Mg-10Gd-5Y-1.8Zn-0.4Zr (wt%). It is shown that small variations in the alloying element concentration can be used to manipulate the alloy microstructure and precipitate formation towards eliminating the asymmetry (tension/compression) and anisotropy of yield stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to investigate the effects of wood species, particle treatments and mix proportion on the physical (density) and mechanical (compressive strength and dynamicmodulus of elasticity) properties of cement-wood composites. Different mix proportions were investigated, based on the cement: wood ratio of 0.3:0.7, in volume, with Pinus elliottii and Eucalyptus grandis sawdust percentages of 0-100, 25-75, 50-50, 75-25 or 100-0. Sawdust particles were pre-treated with either lime or cement coating to improve cement and wood compatibility. Results show that wood species, particle treatments and mix proportions may influence the physical and mechanical properties of cement-wood composites. In general, results confirm that Eucalyptus sawdust and cement are naturally compatible and do not require any previous particle treatment to avoid compatibility problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gambling is rapidly emerging as an important public health issue, with gambling products causing considerable health and social harms to individuals, families and communities. Whilst researchers have raised concerns about online wagering environments, few studies have sought to explore how factors within different gambling environments (both online and land-based) may be influencing the wagering, and more broadly the gambling risk behaviours of young men. Using semi-structured interviews with 50 Australian men (20-37 years) who gambled on sport, we explored the ways in which online and land-based environments may be risk-promoting settings for gambling. This included the appeal factors associated with gambling in these environments, factors that encouraged individuals to gamble, and factors that encouraged individuals to engage in different, and more harmful types of gambling. Interviews were conducted over the course of a year (April 2015 - April 2016). We identified a number of situational and structural factors that promoted risky gambling environments for young men. In the online environment, gambling products had become exceedingly easy to access through mobile technologies, with young men subscribing to multiple accounts to access industry promotions. The intangibility of money within online environments impacted upon risk perceptions. In land-based environments, the social rituals associated with peer group behaviour and sport influenced risky patterns of gambling. The presence of both gambling and alcohol in pub environments led individuals to gamble more than they normally would, and on products that they would not normally gamble on. Land-based venues also facilitated access to multiple forms of gambling under the one roof. We identified a number of factors in both land and online environments that when combined, created risk-promoting settings for gambling among young men. By exploring these contextual conditions that give rise to gambling harm, we are better able to advocate for effective public health responses in creating environments that prevent harmful gambling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acoustic and mechanical properties of silk membranes of different thicknesses were tested to determine their suitability as a repair material for tympanic membrane perforations. Membranes of different thickness (10-100μm) were tested to determine their frequency response and their resistance to pressure loads in a simulated ear canal model. Their mechanical rigidity to pressure loads was confirmed by tensile testing. These membranes were tested alongside animal cartilage, currently the strongest available myringoplasty graft as well as paper, which is commonly used for simpler procedures. Silk membranes showed resonant frequencies within the human hearing range and a higher vibrational amplitude than cartilage, suggesting that silk may offer good acoustic energy transfer characteristics. Silk membranes were also highly resistant to simulated pressure changes in the middle ear, suggesting they can resist retraction, a common cause of graft failure resulting from chronic negative pressures in the middle ear. Part of this strength can be explained by the substantially higher modulus of silk films compared with cartilage. This allows for the production of films that are much thinner than cartilage, with superior acoustic properties, but that still provide the same level of mechanical support as thicker cartilage. Together, these in vitro results suggest that silk membranes may provide good hearing outcomes while offering similar levels of mechanical support to the reconstructed middle ear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi–walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbons’ Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International’s FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through–plane and in–plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in–plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through–plane and in–plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single–filler formulations. For thermal conductivity, Nielsen’s model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen’s model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A really particular and innovative metal-polymer sandwich material is Hybrix. Hybrix is a product developed and manufactured by Lamera AB, Gothenburg, Sweden. This innovative hybrid material is composed by two relatively thin metal layers if compared to the core thickness. The most used metals are aluminum and stainless steel and are separated by a core of nylon fibres oriented perpendicularly to the metal plates. The core is then completed by adhesive layers applied at the PA66-metal interface that once cured maintain the nylon fibres in position. This special material is very light and formable. Moreover Hybrix, depending on the specific metal which is used, can achieve a good corrosion resistance and it can be cut and punched easily. Hybrix architecture itself provides extremely good bending stiffness, damping properties, insulation capability, etc., which again, of course, change in magnitude depending in the metal alloy which is used, its thickness and core thickness. For these reasons nowadays it shows potential for all the applications which have the above mentioned characteristic as a requirement. Finally Hybrix can be processed with tools used in regular metal sheet industry and can be handled as solid metal sheets. In this master thesis project, pre-formed parts of Hybrix were studied and characterized. Previous work on Hybrix was focused on analyze its market potential and different adhesive to be used in the core. All the tests were carried out on flat unformed specimens. However, in order to have a complete description of this material also the effect of the forming process must be taken into account. Thus the main activities of the present master thesis are the following: Dynamic Mechanical-Thermal Analysis (DMTA) on unformed Hybrix samples of different thickness and on pre-strained Hybrix samples, pure epoxy adhesive samples analysis and finally moisture effects evaluation on Hybrix composite structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paraffin has been used as surface protection of wood throughout the ages but its use for impregnation to improve wood resistance to biodegradation is recent. This study determined the main improvements on wood properties with paraffin impregnation. Healthy Pinus pinaster Ait. wood was impregnated with paraffin at different levels using a hot–cold process. Weight gain, equilibrium moisture content and dimensional stability (ASE) at 35 and 65 % relative humidity, termite durability against Reticulitermes grassei (Clément), bending strength, bending stiffness (MOE) and Janka hardness were determined. Density increased from 0.57 to 0.99, ASE ranged between 38–96 % and 16–71 % for 35 and 65 % relative humidity, respectively. Equilibrium moisture content decreased from 9.9 and 12.0 % to 0.8 and 3.6 % for 35 and 65 % relative humidity. Termite durability improved from level 4 to level 3 of attack, and higher termite mortality was found in treated wood (52 % against 17 %). Bending strength (MOR) increased with paraffin weight gain, reaching a 39 % increase. MOE also increased by about 13 % for wood with a weight gain around 80 %. Janka hardness increased significantly reaching about 40 % for wood with 80 % weight gain. Paraffin impregnated wood has improved properties with regard to equilibrium moisture content, dimensional stability and density, bending strength and Janka hardness, and resistance against termites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of supported and un-supported Oxygen Evolution Reaction (OER) iridium based electrocatalysts for Polymer Electrolyte Membrane Water Electrolysis (PEMWE) were synthesized using a polyol method. The electrocatalysts and the supports were characterized using a wide range of physical and electrochemical characterization methods. The effect of morphological characteristics of the OER electrocatalyst and the support on the OER activity was studied. The results of this thesis contribute to the existing research to reduce the cost of PEMWE by enhancing the utilization of precious metal for OER electrocatalysis. Iridium electrocatalysts supported on antimony tin oxide (Ir/ATO) were synthesized using the polyol method with two different heating techniques: conventional and microwave-irradiation. It was shown that the physical morphology and electrochemical properties of Ir/ATO synthesized with the two heating methods were comparable. However, the microwave irradiation method was extremely faster than the conventional heating method. Additionally, the effect of heat treatment (calcination temperature) on the morphology and OER activity of Ir/ATO synthesized electrocatalyst with the conventional polyol method. It was found that the iridium electrocatalyst synthesized with the polyol method, consisted of 1-5 nm particles, possessed an amorphous structure, and contained iridium with an average oxidation state of less than +4. Calcining the catalyst at temperatures more than 400 ºC and less than 700ºC: 1) increased the size of the iridium particles to 30 nm, 2) changed the structure of iridium particles from amorphous to crystalline, 3) increased the iridium oxidation state to +4 (IrO2), 4) reduced the electrochemically active surface area by approximately 50%, and 5) reduced the OER activity by approximately 25%; however, it had no significant effect on the physical and chemical morphology of the ATO support. Moreover, potential support metal carbides and oxides including: Tantalum Carbide (TaC), Niobium Oxide (Nb2O5), Niobium Carbide (NbC), Titanium Carbide (TiC), Tungsten Carbide (WC) and Antimony-doped Tin Oxide (ATO, Sb2O5-SnO2), were characterized, and used as support for the iridium OER electrocatalysts. TaC was found to be a promising support, and increasing its surface area by 4% improved the OER performance of the final supported catalyst by approximately 50%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical employment standards (PES) are developed with the aim of ensuring that an employee's physical and physiological capacities are commensurate with the demands of their occupation. While previous commentaries and narrative reviews have provided frameworks for the development of PES, this is the first systematic review of the methods used to translate job analysis findings to PES tests and performance standards for physically demanding occupations. A search of PubMed and Google Scholar was conducted for research articles published in English up to and including March 2015. Two authors independently reviewed and extracted data.

The search yielded 87 potentially eligible papers, including 60 peer reviewed journal articles and 17 technical reports. 57 papers were excluded leading to a final data set of 31 papers, representing 22 studies. Job analysis was most commonly conducted through subjective determination of job tasks followed by objective quantification and validation. Determination of criterion tasks was evenly distributedthrough subjective and objective methods with criterion tasks being defined most commonly as most demanding, critical and/or frequent. Generic predictive and task-related predictive tests were more commonly observed in isolation or in combination when compared to task simulation tests. Performance standards were more commonly criterion-referenced than norm-referenced with a variety of statistical methods utilised. This review provides recommendations for researchers when developing physical employment standards for a variety of occupations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to identify how pitch area-restrictions affects the tactical behavior, physical and physiological performances of players during soccer large-sided games. A 10 vs. 9 large-sided game was performed under three experimental conditions: (i) restricted-spacing, the pitch was divided into specific areas where players were assigned and they should not leave it; (ii) contiguous-spacing, the pitch was divided into specific areas where the players were only allowed to move to a neighboring one; (iii) free-spacing, the players had no restrictions in space occupation. The positional data were used to compute players’ spatial exploration index and also the distance, coefficient of variation, approximate entropy and frequency of near-in-phase displacements synchronization of players’ dyads formed by the outfield teammates. Players’ physical and physiological performances were assessed by the distance covered at different speed categories, game pace and heart rate. Most likely higher values were found in players’ spatial exploration index under free-spacing conditions. The synchronization between dyads’ displacements showed higher values for contiguous-spacing and free-spacing conditions. In contrast, for the jogging and running intensity zones, restricted-spacing demanded a moderate effect and most likely decrease compared to other scenarios (~20-50% to jogging and ~60-90% to running). Overall, the effects of limiting players’ spatial exploration greatly impaired the co-adaptation between teammates’ positioning while decreasing the physical and physiological performances. These results allow for a better understanding of players’ decision-making process according to specific task rules and can be relevant to enrich practice task design, such that coaches acknowledge the differential effect by using specific pitch-position areas restrictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite significant advances in building technologies with the use of conventional construction materials (as concrete and steel), which significantly have driven the construction industry, earth construction have demonstrated its importance and relevance, as well as it has matched in an efficient and eco-friendly manner the social housing concerns. The diversity of earth construction techniques allowed this material to adapt to different climatic, cultural and social contexts until the present time. However, in Angola, the construction with earth is still associated with population fringes of weak economic resources, for which, given the impossibility of being able to acquire modern construction materials (steel, cement, brick, among others), they resort to the use of available natural materials. Furthermore, the lack of scientific and technical knowledge justifies the negative appreciation of traditional building techniques, and the derogatory way how are considered the earth constructions in Angolan territory. Given the country's current development status, and taking into account the environmental requirements and the real socio-economic sustainability of Angola, it is considered that one of the viable and adequate options, could be the recovering and upgrading of the ancestral techniques of earth construction. The purpose of this research is to develop the technical and scientific knowledge in order to improve and optimize these construction solutions, responding to the real problems of housing quality as well as to the current social, economic and environmental sustainability requirements. In this paper, a description of the physical and mechanical characteristics of the adobes typically used in the construction of traditional houses in some localities of Huambo, province in Angola, is carried out. The methodology was based on mechanical in-situ testing in adobe blocks manufactured with traditional procedures: i) tensile strength evaluated with the bending test and compressive strength test on earth blocks specimens; and, ii) durability and erodibility test by Geelong method adopting the New Zealand standard (NZS) procedures (4297: 1998; 4297: 1998 and 4297: 1999). The results allow the characterization of the materials used in the construction of raw earth in the Huambo region, contributing to the development of knowledge of these sustainable and traditional housing constructive solutions with a strong presence in Angola [1, 2]. This study is part of a larger project in the area of Earth Construction [3], which aims to produce knowledge which can stimulate the use of environmental friendly construction materials and contribute to develop constructive solutions with improved performance, durability, comfort, safety and sustainability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of non-destructive testing (NDT) of materials and structures is of immense importance in engineering and medicine. Several NDT methods including electromagnetic (EM)-based e.g. X-ray and Infrared; ultrasound; and S-waves have been proposed for medical applications. This paper evaluates the viability of near infrared (NIR) spectroscopy, an EM method for rapid non-destructive evaluation of articular cartilage. Specifically, we tested the hypothesis that there is a correlation between the NIR spectrum and the physical and mechanical characteristics of articular cartilage such as thickness, stress and stiffness. Intact, visually normal cartilage-on-bone plugs from 2-3yr old bovine patellae were exposed to NIR light from a diffuse reflectance fibre-optic probe and tested mechanically to obtain their thickness, stress, and stiffness. Multivariate statistical analysis-based predictive models relating articular cartilage NIR spectra to these characterising parameters were developed. Our results show that there is a varying degree of correlation between the different parameters and the NIR spectra of the samples with R2 varying between 65 and 93%. We therefore conclude that NIR can be used to determine, nondestructively, the physical and functional characteristics of articular cartilage.