967 resultados para photochemical reaction mechanisms
Resumo:
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a �Full Text� option. The original article is trackable via the �References� option.
Resumo:
A theoretical study of the dynamics of photo-electron transfer reactions in the Marcus inverted regime is presented. This study is motivated partly by the recent proposal of Barbara et al. (J. Phys. Chem. 96, 3728, 1991) that a minimal model of an electron transfer reaction should consist of a polar solvent mode (X), a low frequency vibrational mode (Q) and one high frequency mode (q). Interplay between these modes may be responsible for the crossover observed in the dynamics from a solvent controlled to a vibrational controlled electron transfer. The following results have been obtained. (i) In the case of slowly relaxing solvents, the proximity of the point of excitation to an effective sink on the excited surface is critical in determining the decay of the reactant population. This is because the Franck-Condon overlap between the reactant ground and the product excited states decreases rapidly with increase in the quantum number of the product vibrational state. (ii) Non-exponential solvation dynamics has an important effect in determining the rates of electron transfer. Especially, a biphasic solvation and a large coupling between the reactant and the product states both may be needed to explain the experimental results. ©1996 American Institute of Physics
Resumo:
The conversion of methanol to gasoline over zeolite ZSM-5 has been studied by temperature programmed surface reaction (TPSR). The technique is able to monitor the two steps in the process: the dehydration of methanol to dimethyl ether and the subsequent conversion of dimethyl ether to hydrocarbons. The activation barriers associated with each step were evaluated from the TPSR profiles and are 25.7 and 46.5 kcal/mol respectively. The methanol desorption profile shows considerable change with the amount of methanol molecules adsorbed per Bronsted site of the zeolite. The energy associated with the desorption process, (CH3OHH+-ZSM5 --> (CH3OHH+-ZSM5 + CH3OH, shows a spectrum of values depending on n.
Resumo:
Electron transfer reactions between donor-acceptor pairs in solution and in organized media exhibit diverse behaviour. Recent experiments have indicated an interesting breakdown of the Marcus parabolic energy gap dependence in the normal regime for back electron transfer from contact ion pairs. A novel explanation of this breakdown has recently been proposed (M. Tachiya and S. Murata, J. Am. Chem. Sec., 116(1994) 2434) which attributes the breakdown to the interplay between the relaxation in the reactant well and the reaction. A particularly interesting aspect of the model is that it envisages the electron transfer in the normal regime to take place from a completely non-equilibrium condition. In this article a time dependent solution of the model is presented for the first time, after generalizing it to include a realistic initial population distribution. The decay of the contact ion pair population is completely non-exponential. This can be used to check the validity of the Tachiya-Murata model. The dynamics of electron transfer from the solvent separated ion pair, which seem to obey the Marcus relation, is exponential.
Resumo:
A four step cyclopentaannulation methodology starting from allyl alcohols using 5-exo-trig radical cyclisation as the key reaction, and its application to the total synthesis of 4-epibakkenolide is described.
Resumo:
Intramolecular gamma-hydrogen abstraction reactions were examined in pentane-2-one and 2-methyl-1-pentene in their lowest triplet states using the AM1 semi-empirical molecular orbital method with the complete geometry optimization in the unrestricted Hartree-Fock frame. The results reveal that the oxygen atom of the carbonyl group and the end carbon atom of the olefinic bond acquire high free valence and spin density indices in their respective lowest triplet states, leading to abstraction of hydrogen from the gamma-position relative to the carbonyl and olefinic bonds. The theoretical energy profiles fit with a polynomial and the probability of tunneling of hydrogen was estimated by the WKB (Wentzel, Kramer and Brillouin) method. The results, after thermal averaging of the rate constants, reveal that tunneling of hydrogen is significant at room temperature.
Resumo:
Electron transfer reactions in large molecules may often be coupled to both the polar solvent modes and the intramolecular vibrational modes of the molecule. This can give rise to a complex dynamics which may in some systems, like betaine, be controlled more by vibrational rather than by solvent effects. Additionally, a significant contribution from an ultrafast relaxation component in the solvation dynamics may enhance the complexity. To explain the wide range of behavior that has been observed experimentally, Barbara et al. recently proposed that a model of an electron transfer reaction should minimally consist of a low-frequency classical solvent mode (X), a low-frequency vibrational mode (Q), and a high-frequency quantum mode (q) (J. Phys. Chem. 1991, 96, 3728). In the present work, a theoretical study of this model is described. This study generalizes earlier work by including the biphasic solvent response and the dynamics of the low-frequency vibrational mode in the presence of a delocalized, extended reaction zone. A novel Green's function technique has been developed which allowed us to study the non-Markovian dynamics on a multidimensional surface. The contributions from the high-frequency vibrational mode and the ultrafast component in the non-Markovian solvent dynamics are found to be primarily responsible for the dramatic increase in charge transfer rate over the prediction of the classical theories that neglect both these factors. These, along with a large coupling between the reactant and the product states, may combine to render the electron transfer rate both very large and constant over a wide range of solvent relaxation rates. A study on the free energy gap dependence of the electron transfer rate reveals that the rates are sensitive to changes in the quantum frequency particularly when the free energy gap is very large.
Resumo:
Diisopropoxytitanium(III) tetrahydroborate, ((PrO)-Pr-1)(2)TiBH4), generated in situ in dichloromethane from diisopropoxytitanium dichloride and benzyltriethylammonium borohydride in a 1:2 ratio selectively reduces aldehydes, ketones, acid chlorides, carboxylic acids, and N-Boc-protected amino acids to the corresponding alcohols in excellent yield under very mild reaction conditions (-78 to 25 degrees C).
Resumo:
Generation of the thermodynamic dienolate of 9-bromocarvone derivatives 5, 7 and 11 furnished the chiral bicycle[2.2.2] octenones 6, 8 and 9 and 12 and 13 containing a bridgehead methyl group via an intramolecular alkylation reaction. In an analogous manner intramolecular alkylation reaction of the bromo enones 15a-e, obtained from carvone 2 by 1,3-alkylative enone transposition (-->14) followed by a regiospecific bromoetherification reaction, furnished the bicyclo[2.2.2]oct-5-en-2-ones 16a-e and 17a-e.
Resumo:
Oxidative addition of tetrachloro-ortho-benzoquinone to lambda(3)-cyclotriphosphazanes, [EtNP(OR)](3) results in an unprecedented ring contraction-rearrangement to give diazadiphosphetidines (EtN)(2)[P(OR)(O2C6Cl4)] [P(O2C6Cl4)-[N(Et)P(OR)(2)}] (R = C6H4Br-4 or C(6)H(3)Me(2)-2,6), a process indicated to be thermodynamically favourable on the basis of PM3 calculations.
Resumo:
he ortho methoxycarbonyl substituent constitutes a sole exception in the ring closure reactions of ortho substituted aryl azides, as it provides no rate acceleration to this reaction. Pyrolysis of ''azido-meta-hemipinate'', an aryl azide containing such a substituent, led us to the title compound, a new azepinylidenepyridylacetic ester, whose structure has been established unambiguously by a single crystal X-ray diffraction study. This is the first report of a reaction involving both a ring expansion to an azaheptafulvalene and a ring extrusion to a pyridyl ring residue.
Resumo:
The Norrish type II processes of methyl-2,2-dimethyl- cyclopropyl ketone, alpha-alkoxy acetones and alkyl pyruvates have been examined using the AM1 semi-empirical molecular orbital method with complete geometry optimization at the partial configuration interaction level in the restricted Hartree-Fock (RHF) frame. The results reveal that the methyl-substituted cyclopropyl ketone has a constrained geometry favourable for hydrogen abstraction from the gamma-position relative to the carbonyl group in the excited singlet state. The presence of the ether oxygen atom in the beta-position relative to the carbonyl group in alkoxy acetones and alkyl pyruvates leads to increased reactivity relative to alkyl monoketones and diketones respectively. The cyclization of 1:4 biradicals has been studied in the unrestricted Hartree-Fock (UHF) frame, and the results reveal that the 1:4 biradical derived from alkoxy acetones readily cyclizes to form oxetanols. On the other hand, in the 1:4 biradicals derived from methyl-substituted cyclopropyl ketone, the three-membered ring breaks readily to form an enol intermediate. Delocalization of an odd electron in 1:4 biradicals derived from alkyl pyruvates is thought to make cyclization difficult.
Resumo:
The intercalation of pyridine in the layered manganese thiophosphate, MnPS3, has been examined in detail by a variety of techniques. The reaction is interesting since none of the anticipated changes in optical and electrical properties associated with intercalation of electron donating molecules is observed. The only notable change in the properties of the host lattice is in the nature of the low-temperature magnetic ordering; while MnPS3 orders antiferromagnetically below 78 K, the intercalated compound shows weak ferromagnetism probably due to a canted spin structure. Vibrational spectra clearly show that the intercalated species are pyridinium ions solvated by neutral pyridine molecules. The corresponding reduced sites of the host lattice, however, were never observed. The molecules in the solvation shell are exchangeable. Although the reaction appears to be topotactic and reversible, from XRD, a more detailed analysis of the products of deintercalation reveal that it is not so. The intercalation proceeds by an ion exchange/intercalation mechanism wherein the intercalated species are pyridinium ions solvated by neutral molecules with charge neutrality being preserved not by electron transfer but by a loss of Mn2+ ions from the lattice. The experimental evidence leading to this conclusion is discussed and it is shown that this model can account satisfactorily for the observed changes (or lack of it) in the optical, electrical, vibrational, and magnetic properties.