997 resultados para particulate phosphorus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Runoff, sediment, total phosphorus and total dissolved phosphorus losses in overland flow were measured for two years on unbounded plots cropped with wheat and oats. Half of the field was cultivated with minimum tillage (shallow tillage with a tine cultivator) and half was conventionally ploughed. Within each cultivation treatment there were different treatment areas (TAs). In the first year of the experiment, one TA was cultivated up and down the slope, one TA was cultivated on the contour, with a beetle bank acting as a vegetative barrier partway up the slope, and one had a mixed direction cultivation treatment, with cultivation and drilling conducted up and down the slope and all subsequent operations conducted on the contour. In the second year, this mixed treatment was replaced with contour cultivation. Results showed no significant reduction in runoff, sediment losses or total phosphorus losses from minimum tillage when compared to the conventional plough treatment, but there were increased losses of total dissolved phosphorus with minimum tillage. The mixed direction cultivation treatment increased surface runoff and losses of sediment and phosphorus. Increasing surface roughness with contour cultivation reduced surface runoff compared to up and down slope cultivation in both the plough and minimum tillage treatment areas, but this trend was not significant. Sediment and phosphorus losses in the contour cultivation treatment followed a very similar pattern to runoff. Combining contour cultivation with a vegetative barrier in the form of a beetle bank to reduce slope length resulted in a non-significant reduction in surface runoff, sediment and total phosphorus when compared to up and down slope cultivation, but there was a clear trend towards reduced losses. However, the addition of a beetle bank did not provide a significant reduction in runoff, sediment losses or total phosphorus losses when compared to contour cultivation, suggesting only a marginal additional benefit. The economic implications for farmers of the different treatment options are investigated in order to assess their suitability for implementation at a field scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P makes it possible: The convenient oxidative synthesis of the 16-electron organophosphorus iron sandwich complex [Fe(4-P2C2tBu2)2] suggests that the elusive all-carbon complex [Fe(4-C4H4)2] is a viable synthetic target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, studies have shown that the classroom environment is very important for students' health and performance. Thus, the evaluation of indoor air quality (IAQ) in a classroom is necessary to ensure students' well-being. In this paper the emphasis is on airborne concentration of particulate matter (PM) in adult education rooms. The mass concentration of PM10 particulates was measured in two classrooms under different ventilation methods in the University of Reading, UK, during the winter period of 2008. In another study the measurement of the concentration of particles was accompanied with measurements of CO2 concentration in these classrooms but this study is the subject of another publication. The ambient PM10, temperature, relative humidity, wind speed and direction, and rainfall events were monitored as well. In general, this study showed that outdoor particle concentrations and outdoor meteorological parameters were identified as significant factors influencing indoor particle concentration levels. Ventilation methods showed significant effects on air change rate and on indoor/outdoor (I/O) concentration ratios. Higher levels of indoor particulates were seen during occupancy periods. I/O ratios were significantly higher when classrooms were occupied than when they were unoccupied, indicating the effect of both people presence and outdoor particle concentration levels. The concentrations of PM10 indoors and outdoors did not meet the requirements of WHO standards for PM10 annual average.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron is a pivotal element in organometallic chemistry, enabling fundamental insights with high-impact applications.[1] Ferrocene derivatives have countless uses,[2] and the recent advances in iron catalysis are equally impressive.[3]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies have shown links between human exposure to indoor airborne particles and adverse health affects. Several recent studies have also reported that the classroom environment has an impact on students’ health and performance. In this study particle concentration in a university classroom is assessed experimentally for different occupancy periods. The mass concentrations of different particle size ranges (0.3 – 20 µm), and the three particulate matter fractions (PM10, PM2.5, and PM1) were measured simultaneously in a classroom with different occupancy periods including occupied and unoccupied periods in the University of Reading, UK, during the winter period of 2010. The results showed that students’ presence is a significant factor affecting particles concentration for the fractions above PM1 in the measured range of 0.3 to 20 µm. The resuspension of the three PM fractions was also determined in the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive summary Nature of the problem (science/management/policy) • Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings. Approaches • This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands. Key findings/state of knowledge • The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management. • The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases. • An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers. • In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored. Major uncertainties/challenges • The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now. • Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity. • In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale. • These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially – but not only – in the southern and eastern EU countries. Recommendations (research/policy) • The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale. • The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free radicals in cigarette smoke have been studied using spin trapping EPR techniques. 2R4F reference cigarettes were smoked using 35 ml puff volumes of 2 seconds duration, once every 60 seconds. The particulate phase of the smoke was separated from the gas phase by passing the smoke through a Cambridge filter pad. For both phases, free radicals were measured and identified. A range of spin-traps was employed: PBN, DMPO, DEPMPO, and DPPH-PBN. In the gas-phase, short-lived carbon- and oxygen- centered radicals were identified; the ratios between them changed during the smoking runs. For the first puffs, C-centered radicals predominated while for the later puffs, O-centered radicals were mainly observed. The particulate phase and the ‘tar’ were studied as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of the labile cluster [Os3(CO)11(MeCN)] with PH3 affords the substituted product [Os3(CO)11(PH3)](1) in high yield. Subsequent reaction of (1) with Na2CO3 in MeOH, followed by acidification, gives the hydrido phosphido cluster [Os3(µ-H)(CO)10(µ-PH2)](2). When (2) is heated to 45–60 °C in the presence of [Os3(CO)11(MeCN)] a hexanuclear complex with the formulation [Os6(µ-H)2(CO)21(µ3-PH)](3) is obtained. If this reaction is repeated using [Os3(CO)10(MeCN)2] instead of [Os3(CO)11(MeCN)], an acetonitrile-containing product, [Os6(µ-H)2(CO)20(MeCN)(µ3-PH)](4), is obtained. An X-ray analysis of (4) shows that two Os3 triangular units are linked by a µ3-phosphinidene ligand, which symmetrically bridges an Os–Os edge of one triangle and is terminally co-ordinated to one Os atom of the second triangle. When (3) is treated with a weak base, such as [N(PPh3)2]Cl or [PPh3Me] Br, deprotonation to the corresponding cluster monoanion [Os6(µ-H)(CO)21(µ3-PH)]–(5) occurs. Treatment of (5) with a weak acid regenerates (3) in quantitative yield. Thermolysis of (3) leads to a closing up of the metal framework, affording the cluster [Os6(µ-H)(CO)18(µ6-P)], which readily deprotonates to give the anion [Os6(CO)18(µ6-P)]–(7) in the presence of [N(PPh3)2] Cl or [PPh3Me]Br. The same anion (7) may also be obtained by direct thermolysis of (5). An X-ray analysis of the [PPh3Me]+ salt of (7) confirms that the phosphorus occupies an interstitial site in a trigonal-prismatic hexaosmium framework, and co-ordinates to all six metal atoms with an average Os–P distance of 2.31 (1)Å. Proton and 31P n.m.r. data on all the new clusters are presented, and the position of the phosphorus resonance in the 31P n.m.r. spectrum is related to the changes in the environment of the phosphorus atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiences from the Mitigation Options for Phosphorus and Sediment (MOPS) projects, which aim to determine the effectiveness of measures to reduce pollutant loading from agricultural land to surface waters, have been used to contribute to the findings of a recent paper (Kay et al., 2009, Agricultural Systems, 99, 67–75), which reviewed the efficacy of contemporary agricultural stewardship measures for ameliorating the water pollution problems of key concern to the UK water industry. MOPS1 is a recently completed 3-year research project on three different soil types in the UK, which focused on mitigation options for winter cereals. MOPS1 demonstrated that tramlines can be the major pathway for sediment and nutrient transfer from arable hillslopes, and that although minimum tillage, crop residue incorporation, contour cultivation, and beetle banks also have potential to be cost-effective mitigation options, tramline management is the one of the most promising treatments for mitigating diffuse pollution losses, as it was able to reduce sediment and nutrient losses by 72–99% in four out of five site years trialled. Using information from the MOPS projects, this paper builds on the findings of Kay et al. to provide an updated picture of the evidence available and the immediate needs for research in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future high levels of atmospheric carbon dioxide (CO2) may increase biomass production of terrestrial plants and hence plant requirements for soil mineral nutrients to sustain a greater biomass production. Phosphorus (P), an element essential for plant growth, is found in soils both in inorganic and in organic forms. In this work, three genotypes of Populus were grown under ambient and elevated atmospheric CO2 concentrations (FACE) for 5 years. An N fertilisation treatment was added in years 4 and 5 after planting. Using a fractionation scheme, total P was sequentially extracted using H2O, NaOH, HCl and HNO3, and P determined as both molybdate (Mo) reactive and total P. Molybdate-reactive P is defined as mainly inorganic but also some labile organic P which is determined by Vanado-molybdophosphoric acid colorimetric methods. Organic P was also measured to assess all plant available and weatherable P pools. We tested the hypotheses that higher P demand due to increased growth is met by a depletion of easily weatherable soil P pools, and that increased biomass inputs increases the amount of organic P in the soil. The concentration of organic P increased under FACE, but was associated with a decrease in total soil organic matter. The greatest increase in the soil P due to elevated CO2 was found in the HCl-extractable P fraction in the non-fertilised treatment. In the NaOH-extractable fraction the Mo-reactive P increased under FACE, but total P did not differ between ambient and FACE. The increase in both the NaOH- and HCl-extractable fractions was smaller after N addition. The results showed that elevated atmospheric CO2 has a positive effect on soil P availability rather than leading to depletion.We suggest that the increase in the NaOH- and HCl-extractable fractions is biologically driven by organic matter mineralization, weathering and mycorrhizal hyphal turnover.