964 resultados para pacs: neural computing technologies
Resumo:
The application of technologies to extend the postharvest life of mangosteen fruit was studied and compared to storage at 25 °C/70-75%R.H (25 °C control treatment). The fruits were packed in expanded polystyrene (EPS) trays (5 fruits/tray). Five treatments were carried out at 13 °C/ 90-95% RH: application of carnauba wax coating, lecithin + CMC (carboxymethyl cellulose) coating, 50 µm LDPE (low density polyethylene) film coating, 13 µm PVC (Polyvinyl chloride), and non-coated sample (13 °C control treatment). Physicochemical analyses were performed twice a week. A statistical design was completely randomized with 8 repetitions for each treatment plus the control treatment. The results were submitted to variance analysis, and the averages compared by the Tukey test at 5% probability. Among the quality parameters analyzed, more significant differences were observed for weight loss, texture, and peel moisture content. The results showed that the maximum storage period for mangosteen at 25 °C is two weeks; while storage at13 °C can guarantee the conservation of this fruit for 25 days. Therefore, the treatment at 13 °C/90-95% RH without the use of coatings and films was more effective and economical.
Resumo:
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.
Resumo:
The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.
Resumo:
The advancement of science and technology makes it clear that no single perspective is any longer sufficient to describe the true nature of any phenomenon. That is why the interdisciplinary research is gaining more attention overtime. An excellent example of this type of research is natural computing which stands on the borderline between biology and computer science. The contribution of research done in natural computing is twofold: on one hand, it sheds light into how nature works and how it processes information and, on the other hand, it provides some guidelines on how to design bio-inspired technologies. The first direction in this thesis focuses on a nature-inspired process called gene assembly in ciliates. The second one studies reaction systems, as a modeling framework with its rationale built upon the biochemical interactions happening within a cell. The process of gene assembly in ciliates has attracted a lot of attention as a research topic in the past 15 years. Two main modelling frameworks have been initially proposed in the end of 1990s to capture ciliates’ gene assembly process, namely the intermolecular model and the intramolecular model. They were followed by other model proposals such as templatebased assembly and DNA rearrangement pathways recombination models. In this thesis we are interested in a variation of the intramolecular model called simple gene assembly model, which focuses on the simplest possible folds in the assembly process. We propose a new framework called directed overlap-inclusion (DOI) graphs to overcome the limitations that previously introduced models faced in capturing all the combinatorial details of the simple gene assembly process. We investigate a number of combinatorial properties of these graphs, including a necessary property in terms of forbidden induced subgraphs. We also introduce DOI graph-based rewriting rules that capture all the operations of the simple gene assembly model and prove that they are equivalent to the string-based formalization of the model. Reaction systems (RS) is another nature-inspired modeling framework that is studied in this thesis. Reaction systems’ rationale is based upon two main regulation mechanisms, facilitation and inhibition, which control the interactions between biochemical reactions. Reaction systems is a complementary modeling framework to traditional quantitative frameworks, focusing on explicit cause-effect relationships between reactions. The explicit formulation of facilitation and inhibition mechanisms behind reactions, as well as the focus on interactions between reactions (rather than dynamics of concentrations) makes their applicability potentially wide and useful beyond biological case studies. In this thesis, we construct a reaction system model corresponding to the heat shock response mechanism based on a novel concept of dominance graph that captures the competition on resources in the ODE model. We also introduce for RS various concepts inspired by biology, e.g., mass conservation, steady state, periodicity, etc., to do model checking of the reaction systems based models. We prove that the complexity of the decision problems related to these properties varies from P to NP- and coNP-complete to PSPACE-complete. We further focus on the mass conservation relation in an RS and introduce the conservation dependency graph to capture the relation between the species and also propose an algorithm to list the conserved sets of a given reaction system.
Resumo:
Currently, the power generation is one of the most significant life aspects for the whole man-kind. Barely one can imagine our life without electricity and thermal energy. Thus, different technologies for producing those types of energy need to be used. Each of those technologies will always have their own advantages and disadvantages. Nevertheless, every technology must satisfy such requirements as efficiency, ecology safety and reliability. In the matter of the power generation with nuclear energy utilization these requirements needs to be highly main-tained, especially since accidents on nuclear power plants may cause very long term deadly consequences. In order to prevent possible disasters related to the accident on a nuclear power plant strong and powerful algorithms were invented in last decades. Such algorithms are able to manage calculations of different physical processes and phenomena of real facilities. How-ever, the results acquired by the computing must be verified with experimental data.
Resumo:
With the growth in new technologies, using online tools have become an everyday lifestyle. It has a greater impact on researchers as the data obtained from various experiments needs to be analyzed and knowledge of programming has become mandatory even for pure biologists. Hence, VTT came up with a new tool, R Executables (REX) which is a web application designed to provide a graphical interface for biological data functions like Image analysis, Gene expression data analysis, plotting, disease and control studies etc., which employs R functions to provide results. REX provides a user interactive application for the biologists to directly enter the values and run the required analysis with a single click. The program processes the given data in the background and prints results rapidly. Due to growth of data and load on server, the interface has gained problems concerning time consumption, poor GUI, data storage issues, security, minimal user interactive experience and crashes with large amount of data. This thesis handles the methods by which these problems were resolved and made REX a better application for the future. The old REX was developed using Python Django and now, a new programming language, Vaadin has been implemented. Vaadin is a Java framework for developing web applications and the programming language is extremely similar to Java with new rich components. Vaadin provides better security, better speed, good and interactive interface. In this thesis, subset functionalities of REX was selected which includes IST bulk plotting and image segmentation and implemented those using Vaadin. A code of 662 lines was programmed by me which included Vaadin as the front-end handler while R language was used for back-end data retrieval, computing and plotting. The application is optimized to allow further functionalities to be migrated with ease from old REX. Future development is focused on including Hight throughput screening functions along with gene expression database handling
Resumo:
Convolutional Neural Networks (CNN) have become the state-of-the-art methods on many large scale visual recognition tasks. For a lot of practical applications, CNN architectures have a restrictive requirement: A huge amount of labeled data are needed for training. The idea of generative pretraining is to obtain initial weights of the network by training the network in a completely unsupervised way and then fine-tune the weights for the task at hand using supervised learning. In this thesis, a general introduction to Deep Neural Networks and algorithms are given and these methods are applied to classification tasks of handwritten digits and natural images for developing unsupervised feature learning. The goal of this thesis is to find out if the effect of pretraining is damped by recent practical advances in optimization and regularization of CNN. The experimental results show that pretraining is still a substantial regularizer, however, not a necessary step in training Convolutional Neural Networks with rectified activations. On handwritten digits, the proposed pretraining model achieved a classification accuracy comparable to the state-of-the-art methods.
Resumo:
The Thesis title” Healthcare services in cloud computing” discusses the healthcare services available in the new converging technology called cloud computing. This computing technology had craved its path in the desirable market field healthcare. Healthcare is an extensive and a massive mission of maintenance and providing a complete treatment to the person suffering from ailments. In the olden days well equipped healthcare surveillance is not accessible to all communities of people due to several reasons like, geographical locations, equipment cost, and infrastructure, and skilled medical practitioners, now due to the advancement of the medicine in cloud technology has reached some of its barriers making it more viable to all the people (communities) with all the robust technologies and techniques. This study will give an overview of the healthcare transformation of different approaches of cloud computing over information technology and its strategic usage. Further enhancing better healthcare to ensure scalable, compatible functions supporting the well-being, this study also considers the techniques of cloud computing and its application, advancement in healthcare.
Resumo:
This thesis work studies the modelling of the colour difference using artificial neural network. Multilayer percepton (MLP) network is proposed to model CIEDE2000 colour difference formula. MLP is applied to classify colour points in CIE xy chromaticity diagram. In this context, the evaluation was performed using Munsell colour data and MacAdam colour discrimination ellipses. Moreover, in CIE xy chromaticity diagram just noticeable differences (JND) of MacAdam ellipses centres are computed by CIEDE2000, to compare JND of CIEDE2000 and MacAdam ellipses. CIEDE2000 changes the orientation of blue areas in CIE xy chromaticity diagram toward neutral areas, but on the whole it does not totally agree with the MacAdam ellipses. The proposed MLP for both modelling CIEDE2000 and classifying colour points showed good accuracy and achieved acceptable results.
Resumo:
In this study, an infrared thermography based sensor was studied with regard to usability and the accuracy of sensor data as a weld penetration signal in gas metal arc welding. The object of the study was to evaluate a specific sensor type which measures thermography from solidified weld surface. The purpose of the study was to provide expert data for developing a sensor system in adaptive metal active gas (MAG) welding. Welding experiments with considered process variables and recorded thermal profiles were saved to a database for further analysis. To perform the analysis within a reasonable amount of experiments, the process parameter variables were gradually altered by at least 10 %. Later, the effects of process variables on weld penetration and thermography itself were considered. SFS-EN ISO 5817 standard (2014) was applied for classifying the quality of the experiments. As a final step, a neural network was taught based on the experiments. The experiments show that the studied thermography sensor and the neural network can be used for controlling full penetration though they have minor limitations, which are presented in results and discussion. The results are consistent with previous studies and experiments found in the literature.
Resumo:
The freshwater mollusc Lymnaea stagnalis was utilized in this study to further the understanding of how network properties change as a result of associative learning, and to determine whether or not this plasticity is dependent on previous experience during development. The respiratory and neural correlates of operant conditioning were first determined in normally reared Lymnaea. The same procedure was then applied to differentially reared Lymnaea, that is, animals that had never experienced aerial respiration during their development. The aim was to determine whether these animals would demonstrate the same responses to the training paradigm. In normally reared animals, a behavioural reduction in aerial respiration was accompanied by numerous changes within the neural network. Specifically, I provide evidence of changes at the level of the respiratory central pattern generator and the motor output. In the differentially reared animals, there was little behavioural data to suggest learning and memory. There were, however, significant differences in the network parameters, similar to those observed in normally reared animals. This demonstrated an effect of operant conditioning on differentially reared animals. In this thesis, I have identified additional correlates of operant conditioning in normally reared animals and provide evidence of associative learning in differentially reared animals. I conclude plasticity is not dependent on previous experience, but is rather ontogenetically programmed within the neural network.
Resumo:
Psychopathy is associated with well-known characteristics such as a lack of empathy and impulsive behaviour, but it has also been associated with impaired recognition of emotional facial expressions. The use of event-related potentials (ERPs) to examine this phenomenon could shed light on the specific time course and neural activation associated with emotion recognition processes as they relate to psychopathic traits. In the current study we examined the PI , N170, and vertex positive potential (VPP) ERP components and behavioural performance with respect to scores on the Self-Report Psychopathy (SRP-III) questionnaire. Thirty undergraduates completed two tasks, the first of which required the recognition and categorization of affective face stimuli under varying presentation conditions. Happy, angry or fearful faces were presented under with attention directed to the mouth, nose or eye region and varied stimulus exposure duration (30, 75, or 150 ms). We found that behavioural performance to be unrelated to psychopathic personality traits in all conditions, but there was a trend for the Nl70 to peak later in response to fearful and happy facial expressions for individuals high in psychopathic traits. However, the amplitude of the VPP was significantly negatively associated with psychopathic traits, but only in response to stimuli presented under a nose-level fixation. Finally, psychopathic traits were found to be associated with longer N170 latencies in response to stimuli presented under the 30 ms exposure duration. In the second task, participants were required to inhibit processing of irrelevant affective and scrambled face distractors while categorizing unrelated word stimuli as living or nonliving. Psychopathic traits were hypothesized to be positively associated with behavioural performance, as it was proposed that individuals high in psychopathic traits would be less likely to automatically attend to task-irrelevant affective distractors, facilitating word categorization. Thus, decreased interference would be reflected in smaller N170 components, indicating less neural activity associated with processing of distractor faces. We found that overall performance decreased in the presence of angry and fearful distractor faces as psychopathic traits increased. In addition, the amplitude of the N170 decreased and the latency increased in response to affective distractor faces for individuals with higher levels of psychopathic traits. Although we failed to find the predicted behavioural deficit in emotion recognition in Task 1 and facilitation effect in Task 2, the findings of increased N170 and VPP latencies in response to emotional faces are consistent wi th the proposition that abnormal emotion recognition processes may in fact be inherent to psychopathy as a continuous personality trait.
Resumo:
The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.