934 resultados para omni-channel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical efficacy of local anesthetic and antiarrhythmic drugs is due to their voltage- and frequency-dependent block of Na+ channels. Quaternary local anesthetic analogs such as QX-314, which are permanently charged and membrane-impermeant, effectively block cardiac Na+ channels when applied from either side of the membrane but block neuronal Na+ channels only from the intracellular side. This difference in extracellular access to QX-314 is retained when rat brain rIIA Na+ channel alpha subunits and rat heart rH1 Na+ channel alpha subunits are expressed transiently in tsA-201 cells. Amino acid residues in transmembrane segment S6 of homologous domain IV (IVS6) of Na+ channel alpha subunits have important effects on block by local anesthetic drugs. Although five amino acid residues in IVS6 differ between brain rIIA and cardiac rH1, exchange of these amino acid residues by site-directed mutagenesis showed that only conversion of Thr-1755 in rH1 to Val as in rIIA was sufficient to reduce the rate and extent of block by extracellular QX-314 and slow the escape of drug from closed channels after use-dependent block. Tetrodotoxin also reduced the rate of block by extracellular QX-314 and slowed escape of bound QX-314 via the extracellular pathway in rH1, indicating that QX-314 must move through the pore to escape. QX-314 binding was inhibited by mutation of Phe-1762 in the local anesthetic receptor site of rH1 to Ala whether the drug was applied extracellularly or intracellularly. Thus, QX-314 binds to a single site in the rH1 Na+ channel alpha subunit that contains Phe-1762, whether it is applied from the extracellular or intracellular side of the membrane. Access to that site from the extracellular side of the pore is determined by the amino acid at position 1755 in the rH1 cardiac Na+ channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoblasts express calcium channels that are thought to be involved in the transduction of extracellular signals regulating bone metabolism. The molecular identity of the pore-forming subunit (alpha 1) of L-type calcium channel(s) was determined in rat osteosarcoma UMR-106 cells, which express an osteoblast phenotype. A homology-based reverse transcriptase-polymerase chain reaction cloning strategy was employed that used primers spanning the fourth domain. Three types of cDNAs were isolated, corresponding to the alpha 1S (skeletal), alpha 1C (cardiac), and alpha 1D (neuroendocrine) isoforms. In the transmembrane segment IVS3 and the extracellular loop formed by the IVS3-S4 linker, a single pattern of mRNA splicing was found that occurs in all three types of calcium channel transcripts. Northern blot analysis revealed an 8.6-kb mRNA that hybridized to the alpha 1C probe and 4.8- and 11.7-kb mRNAs that hybridized to the alpha 1S and alpha 1D probes. Antisense oligonucleotides directed to the calcium channel alpha 1D transcript, but not those directed to alpha 1S or alpha 1C transcripts, inhibited the rise of intracellular calcium induced by parathyroid hormone. However, alpha 1D antisense oligonucleotides had no effect on the accumulation of cAMP induced by parathyroid hormone. When L-type calcium channels were activated with Bay K 8644, antisense oligonucleotides to each of the three isoforms partially inhibited the rise of intracellular calcium. The present results provide evidence for the expression of three distinct calcium channel alpha 1-subunit isoforms in an osteoblast-like cell line. We conclude that the alpha 1D isoform is selectively activated by parathyroid hormone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overlapping cDNA clones spanning the entire coding region of a Na-channel alpha subunit were isolated from cultured Schwann cells from rabbits. The coding region predicts a polypeptide (Nas) of 1984 amino acids exhibiting several features characteristic of Na-channel alpha subunits isolated from other tissues. Sequence comparisons showed that the Nas alpha subunit resembles most the family of Na channels isolated from brain (approximately 80% amino acid identity) and is least similar (approximately 55% amino acid identity) to the atypical Na channel expressed in human heart and the partial rat cDNA, NaG. As for the brain II and III isoforms, two variants of Nas exist that appear to arise by alternative splicing. The results of reverse transcriptase-polymerase chain reaction experiments suggest that expression of Nas transcripts is restricted to cells in the peripheral and central nervous systems. Expression was detected in cultured Schwann cells, sciatic nerve, brain, and spinal cord but not in skeletal or cardiac muscle, liver, kidney, or lung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the genes encoding two proteins of the retinal rod phototransduction cascade, opsin and the beta subunit of rod cGMP phosphodiesterase, cause retinitis pigmentosa (RP) in some families. Here we report defects in a third member of this biochemical pathway in still other patients with this disease. We screened 94 unrelated patients with autosomal dominant RP and 173 unrelated patients with autosomal recessive RP for mutations in the gene encoding the alpha subunit of the rod cGMP-gated cation channel. Five mutant sequences cosegregated with disease among four unrelated families with autosomal recessive RP. Two of these were nonsense mutations early in the reading frame (Glu76End and Lys139End) and one was a deletion encompassing most if not all of the transcriptional unit; these three alleles would not be expected to encode a functional channel. The remaining two mutations were a missense mutation (Ser316Phe) and a frameshift [Arg654(1-bp del)] mutation truncating the last 32 aa in the C terminus. The latter two mutations were expressed in vitro and found to encode proteins that were predominantly retained inside the cell instead of being targeted to the plasma membrane. We conclude that the absence or paucity of functional cGMP-gated cation channels in the plasma membrane is deleterious to rod photoreceptors and is an uncommon cause of RP.