989 resultados para ocean waves and oscillations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the combined effects of ocean acidification, temperature, and salinity on growth and test degradation of Ammonia aomoriensis. This species is one of the dominant benthic foraminifera in near-coastal habitats of the southwestern Baltic Sea that can be particularly sensitive to changes in seawater carbonate chemistry. To assess potential responses to ocean acidification and climate change, we performed a fully crossed experiment involving three temperatures (8, 13, and 18°C), three salinities (15, 20, and 25) and four pCO2 levels (566, 1195, 2108, and 3843 µatm) for six weeks. Our results highlight a sensitive response of A. aomoriensis to undersaturated seawater with respect to calcite. The specimens continued to grow and increase their test diameter in treatments with pCO2 <1200 µatm, when Omega calc >1. Growth rates declined when pCO2 exceeded 1200 µatm (Omega calc <1). A significant reduction in test diameter and number of tests due to dissolution was observed below a critical Omega calc of 0.5. Elevated temperature (18°C) led to increased Omega calc, larger test diameter, and lower test degradation. Maximal growth was observed at 18°C. No significant relationship was observed between salinity and test growth. Lowered and undersaturated Omega calc, which results from increasing pCO2 in bottom waters, may cause a significant future decline of the population density of A. aomoriensis in its natural environment. At the same time, this effect might be partially compensated by temperature rise due to global warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature.