954 resultados para nuclear potential energy surface
Resumo:
This report examines the financial position of EDF and Areva and analyses what the impact of their nuclear ambitions will be on this.
Resumo:
This report examines the level of debt of ENEL and how that will be impacted by its plans for new nuclear power plants.
Resumo:
This paper investigates the application of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste through the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of lead-free solder paste containing different types of flux. Ultrasonic techniques offer a robust and reliable form of non-destructive testing of materials where access to the sample is restricted or when sample handling can interfere with the monitoring or analysis process due to externally incorporated changes to the material’s physical state or accidental contamination during the removal or testing process. Ultrasonic based techniques are increasingly used for quality control and production monitoring functions which requires evaluation of changes in material properties for a wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capability to take rapid measurements in systems which are optically opaque. The conventional industry approach for characterising the rheological properties of suspensions during processing/packaging stage is mainly through the use of viscometer and some through the use of rheometer. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. The ultrasound technique being proposed provides simple, yet accurate and easy to use solution for the in-situ rheological characterisation of solder pastes which will benefit the materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers). The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.
Resumo:
The inaugural lecture of Professor Stephen Thomas at the University of Greenwich, 4th February 2010. It examines whether further pursuit of competition in energy markets and expansion in the role of nuclear power can be the main elements in a policy to meet goals of security, sustainability and affordability.
Resumo:
A voluminous literature exists on the analysis of water-soluble ions extracted from gypsum crusts and patinas formed on building surfaces. However, less data is available on the intermediate dust layer and the important role its complex matrix and constituents play in crust/patina formation. To address this issue, surface dust samples were collected from two buildings in the city of Budapest. Substrate properties, different pollution levels and environmental variations were considered by collecting samples from a city centre granite building exposed to intense traffic conditions and from an oolitic limestone church situated in a pedestrian area outside and high above the main pollution zone. Selective extraction examines both water-soluble ions (Ca2+, Mg2+, Na+, K+, Cl-, NO3- SO42-) and selected elements (Fe, Mn, Zn, Cu, Cr, Pb, Ni) from the water-soluble, exchangeable/carbonate, amorphous Mn, amorphous Fe/Mn, crystalline Fe/Mn, organic and residual phases, their mobility and potential to catalyse heterogeneous surface reactions. Salt weathering processes are highlighted by high concentrations of water-soluble Ca2+, Na+, Cl- and SO42-- at both sites. Manganese, Zn and Cu and to a lesser extent Pb and Ni, are very mobile in the city centre dust, where 30%, 54%, 38%, 11% and 11% of their totals are bound by the water-soluble phase, respectively. Church dust shows a sharp contrast for Mn, Zn, Cu and Pb with only 3%, 1%, 12% and 3% of their totals being bound by the water-soluble phase respectively. This may be due to (a) different environmental conditions at the church e.g. lower humidity (b) continuous replenishment of salts under intensive city centre traffic conditions (c) enrichment in oxidisable organic carbon by a factor of 4.5 and a tenfold increase in acidity in the city centre dust.
Resumo:
We report on a study comparing absolute K-alpha yield from Ti foils measured with a calibrated system of an X-ray CCD coupled to a curved LiF Von-Hamos crystal spectrometer to the difference in the signals measured simultaneously with two similar photodiodes fitted with two different filters. Our data indicate that a combination of photodiodes with different filters could be developed into an alternative and inexpensive diagnostic for monitoring single shot pulsed emission in a narrow band of X-ray region.
Resumo:
The damage induced in supercoiled plasmid DNA molecules by 1-6 keV carbon ions has been investigated as a function of ion exposure, energy and charge state. The production of short linear fragments through multiple double strand breaks has been demonstrated and exponential exposure responses for each of the topoisomers have been found. The cross section for the loss of supercoiling was calculated to be (2.2 +/- 0.5) x 10(-14) cm(2) for 2 keVC(+) ions. For singly charged carbon ions, increased damage was observed with increasing ion energy. In the case of 2 keV doubly charged ions, the damage was greater than for singly charged ions of the same energy. These observations demonstrate that ion induced damage is a function of both the kinetic and potential energies of the ion.
Resumo:
In this paper we use a zero-range potential (ZRP) method to model positron interaction with molecules. This allows us to investigate the e?ect of molecular vibrations on positron–molecule annihilation using the van der Waals dimer Kr2 as an example. We also use the ZRP to explore positron binding to polyatomics and examine the dependence of the binding energy on the size of the molecule for alkanes. We ?nd that a second bound state appears for a molecule with ten carbons, similar to recent experimental evidence for such a state emerging in alkanes with twelve carbons.
Resumo:
Electrochemical capacitors, also known as supercapacitors, are becoming increasingly important components in energy storage, although their widespread use has not been attained due to a high cost/ performance ratio. Fundamental research is contributing to lowered costs through the engineering of new materials. Currently the most viable materials used in electrochemical capacitors are biomassderived and polymer-derived activated carbons, although other carbon materials are useful research tools. Metal oxides could result in a step change for electrochemical capacitor technology and is an exciting area of research. The selection of an appropriate electrolyte and electrode structure is fundamental in determining device performance. Although there are still many uncertainties in understanding the underlying mechanisms involved in electrochemical capacitors, genuine progress continues to be made. It is argued that a large, collaborative international research programme is necessary to fully develop the potential of electrochemical capacitors.
Resumo:
Two manganese steels were investigated: Fe-19.7%Mn (VM339A) and Fe-19.7%Mn stabilized with 0.056%C, 0.19%Ti and 0.083%Al (VM339B). The toughness of VM339A was higher than VM339B, but VM339B had higher hardness. Tempering does not affect the toughness of the alloys. SEM images of the fracture surface for both the alloys revealed ductile fractures. A further alloy with a lower manganese content, Fe-8.46%Mn-0.24%Nb-0.038%C, and thus even lower cost than the conventional 3.5Ni cryogenic steel, was tested for its impact toughness after heat treatment at 600°C, giving promising results.
Resumo:
From the molecular mechanism of antagonist unbinding in the ß(1) and ß(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of ß(1) -selective Esmolol and ß(2) -selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the ß(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the ß(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the ß(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the ß(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface. © 2012 John Wiley & Sons A/S.
Resumo:
Nuclear factor-kappaB (NF-kappaB) has been implicated in a number of malignancies and has been suggested to be a potential molecular target in the treatment of leukaemia. This study demonstrated the constitutive activation of NF-kappaB in human myeloid blasts and a clear correlation between NF-kappaB expression and in vitro cytoprotection. High NF-kappaB expression was found in many of the poor prognostic acute myeloid leukaemia (AML) subtypes, such as French-American-British classification M0 and M7, and the poor cytogenetic risk group. The in vitro effects of LC-1, a novel dimethylamino-parthenolide analogue, were assessed in 62 primary untreated AML samples. LC-1 was found to be cytotoxic to AML cells in a dose-dependent manner, mediated through the induction of apoptosis. The median drug concentration necessary to kill 50% of the cells was 4.5 micromol/l for AML cells, compared with 12.8 micromol/l for normal marrow cells. LC-1 was shown to reduce the five individual human NF-kappaB Rel proteins in a dose-dependent manner. The subsequent inhibition of many NF-kappaB-regulated cytokines was also demonstrated. Importantly, sensitivity to LC-1 was correlated with the basal NF-kappaB activity. Consequently, LC-1 treatment provides a proof of principle for the use of NF-kappaB inhibitors in the treatment of AML.