946 resultados para multi-speed integration
Resumo:
Multi-party key agreement protocols indirectly assume that each principal equally contributes to the final form of the key. In this paper we consider three malleability attacks on multi-party key agreement protocols. The first attack, called strong key control allows a dishonest principal (or a group of principals) to fix the key to a pre-set value. The second attack is weak key control in which the key is still random, but the set from which the key is drawn is much smaller than expected. The third attack is named selective key control in which a dishonest principal (or a group of dishonest principals) is able to remove a contribution of honest principals to the group key. The paper discusses the above three attacks on several key agreement protocols, including DH (Diffie-Hellman), BD (Burmester-Desmedt) and JV (Just-Vaudenay). We show that dishonest principals in all three protocols can weakly control the key, and the only protocol which does not allow for strong key control is the DH protocol. The BD and JV protocols permit to modify the group key by any pair of neighboring principals. This modification remains undetected by honest principals.
Resumo:
We present new evidence for sector collapses of the South Soufrière Hills (SSH) edifice, Montserrat during the mid-Pleistocene. High-resolution geophysical data provide evidence for sector collapse, producing an approximately 1 km3 submarine collapse deposit to the south of SSH. Sedimentological and geochemical analyses of submarine deposits sampled by sediment cores suggest that they were formed by large multi-stage flank failures of the subaerial SSH edifice into the sea. This work identifies two distinct geochemical suites within the SSH succession on the basis of trace-element and Pb-isotope compositions. Volcaniclastic turbidites in the cores preserve these chemically heterogeneous rock suites. However, the subaerial chemostratigraphy is reversed within the submarine sediment cores. Sedimentological analysis suggests that the edifice failures produced high-concentration turbidites and that the collapses occurred in multiple stages, with an interval of at least 2 ka between the first and second failure. Detailed field and petrographical observations, coupled with SEM image analysis, shows that the SSH volcanic products preserve a complex record of magmatic activity. This activity consisted of episodic explosive eruptions of andesitic pumice, probably triggered by mafic magmatic pulses and followed by eruptions of poorly vesiculated basaltic scoria, and basaltic lava flows.
Resumo:
We study the natural problem of secure n-party computation (in the passive, computationally unbounded attack model) of the n-product function f G (x 1,...,x n ) = x 1 ·x 2 ⋯ x n in an arbitrary finite group (G,·), where the input of party P i is x i ∈ G for i = 1,...,n. For flexibility, we are interested in protocols for f G which require only black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our results are as follows. First, on the negative side, we show that if (G,·) is non-abelian and n ≥ 4, then no ⌈n/2⌉-private protocol for computing f G exists. Second, on the positive side, we initiate an approach for construction of black-box protocols for f G based on k-of-k threshold secret sharing schemes, which are efficiently implementable over any black-box group G. We reduce the problem of constructing such protocols to a combinatorial colouring problem in planar graphs. We then give two constructions for such graph colourings. Our first colouring construction gives a protocol with optimal collusion resistance t < n/2, but has exponential communication complexity O(n*2t+1^2/t) group elements (this construction easily extends to general adversary structures). Our second probabilistic colouring construction gives a protocol with (close to optimal) collusion resistance t < n/μ for a graph-related constant μ ≤ 2.948, and has efficient communication complexity O(n*t^2) group elements. Furthermore, we believe that our results can be improved by further study of the associated combinatorial problems.
Consumers persepctive on pharmacists integration into private primary healthcare clinics in Malaysia
Resumo:
Background: Pharmacists are considered medication experts but are underutilised mainly at the periphery of the primary healthcare team. General medical practitioners (GPs) in Malaysian private healthcare clinics are granted rights to prescribe and dispense medications, thus furhter limiting pharmacists involvement in ensuring safe use of medicines. The integration of pharmacist into private primary healthcare clinics has the potential to reduce medication-relation problems. Objective: To explore the views of consumers on the integration of pharmacists within private primary healthcare clinics in Malaysia. Method: A purposive sample of healthcare consumers in Selangor and Kuala Lumpur, Malaysia were invited to participate in focus groups and semi-structured interviews. Sessions were audio recorded and transcribed verbatim and thematically analysed using NVivo 10. Results: A total of 24 healthcare consumers particpated in two focus groups and six semi-structured interviews. Four major themes were identified: (1) Pharmacists role viewed mainly as supplying medications, (2) Readiness to accept pharmacists in private healthcare clinics, (3) Willingness to pay for pharmacy services, and (4) Concerns about GPs resistance to pharmacist integration. Consumers felt that a pharmacist integrated into private prumary healthcare clinics could offer potential benefits such as counter-checking prescriptions to ensure correct medication is supplied and counselling consumers on their medications and the potential side effects. The potential to increase in costs to consumers and GPs reluctance were perceived as barriers to integration. Conclusion: This study provides insights into consumers perspectives on the roles of pharmacists within private primary healthcare clinics in Malaysia. Consumers generally supported pharmacist integration into private primary healthcare clinics. However, for pharmacists to expand their capacity in providing integrated and collaborative primary care services to consumers, barriers to pharmacist integration need to be addressed.
Resumo:
This paper presents a 100 Hz monocular position based visual servoing system to control a quadrotor flying in close proximity to vertical structures approximating a narrow, locally linear shape. Assuming the object boundaries are represented by parallel vertical lines in the image, detection and tracking is achieved using Plücker line representation and a line tracker. The visual information is fused with IMU data in an EKF framework to provide fast and accurate state estimation. A nested control design provides position and velocity control with respect to the object. Our approach is aimed at high performance on-board control for applications allowing only small error margins and without a motion capture system, as required for real world infrastructure inspection. Simulated and ground-truthed experimental results are presented.
Resumo:
In this paper a novel controller for stable and precise operation of multi-rotors with heavy slung loads is introduced. First, simplified equations of motions for the multi-rotor and slung load are derived. The model is then used to design a Nonlinear Model Predictive Controller (NMPC) that can manage the highly nonlinear dynamics whilst accounting for system constraints. The controller is shown to simultaneously track specified waypoints whilst actively damping large slung load oscillations. A Linear-quadratic regulator (LQR) controller is also derived, and control performance is compared in simulation. Results show the improved performance of the Nonlinear Model Predictive Control (NMPC) controller over a larger flight envelope, including aggressive maneuvers and large slung load displacements. Computational cost remains relatively small, amenable to practical implementation. Such systems for small Unmanned Aerial Vehicles (UAVs) may provide significant benefit to several applications in agriculture, law enforcement and construction.
Resumo:
The Australian Civil Aviation Safety Authority (CASA) currently lists more than 100 separate entities or organisations which maintain a UAS Operator Certificate (UOC) [1]. Approved operations are overwhelmingly a permutation of aerial photography, surveillance, survey or spotting and predominantly, are restricted to Visual Line of Sight (VLOS) operations, below 400 feet, and not within 3 NM of an aerodrome. However, demand is increasing for a Remote Piloted Aerial System (RPAS) regulatory regime which facilitates more expansive operations, in particular unsegregated, Beyond Visual Line of Sight (BVLOS) operations. Despite this demand, there is national and international apprehension regarding the necessary levels of airworthiness and operational regulation required to maintain safety and minimise the risk associated with unsegregated operations. Fundamental to addressing these legitimate concerns will be the mechanisms that underpin safe separation and collision avoidance. Whilst a large body of research has been dedicated to investigating on-board, Sense and Avoid (SAA) technology necessary to meet this challenge, this paper focuses on the contribution of the NAS to separation assurance, and how it will support, as well as complicate RPAS integration. The paper collates and presents key, but historically disparate, threads of Australian RPAS and NAS related information, and distils it with a filter focused on minimising RPAS collision risk. Our ongoing effort is motivated by the need to better understand the separation assurance contribution provided by the NAS layers, in the first instance, and subsequently employ this information to identify scenarios where the coincident collision risk is demonstrably low, providing legitimate substantiation for concessions on equipage and airworthiness standards.
Resumo:
The value of information technology (IT) is often realized when continuously being used after users’ initial acceptance. However, previous research on continuing IT usage is limited for dismissing the importance of mental goals in directing users’ behaviors and for inadequately accommodating the group context of users. This in-progress paper offers a synthesis of several literature to conceptualize continuing IT usage as multilevel constructs and to view IT usage behavior as directed and energized by a set of mental goals. Drawing from the self-regulation theory in the social psychology, this paper proposes a process model, positioning continuing IT usage as multiple-goal pursuit. An agent-based modeling approach is suggested to further explore causal and analytical implications of the proposed process model.
Resumo:
The preventive maintenance of traction equipment for Very High Speed Trains (VHST) nowadays is becoming very expensive owing to the high complexity and quality of these components that require high reliability. An efficient maintenance approach like the Condition-Based Maintenance (CBM) should be implemented to reduce the costs. For this purpose, an experimental full-scale test rig for the CBM of VHST traction equipment has been designed to investigate in detail failures in the main mechanical components of system, i.e. motor, bearings and gearbox. The paper describes the main characteristics of this unique test rig, able to reproduce accurately the train operating conditions, including the relative movements of the motor, the gearbox and the wheel axle. Gearbox, bearing seats and motor are equipped by accelerometers, thermocouples, torque meter and other sensors in different positions. The testing results give important information about the most suitable sensor position and type to be installed for each component and show the effectiveness of the techniques used for the signal analysis in order to identify faults of the gearbox and motor bearings.
Resumo:
Monitoring of the integrity of rolling element bearings in the traction system of high speed trains is a fundamental operation in order to avoid catastrophic failures and to implement effective condition-based maintenance strategies. Diagnostics of rolling element bearings is usually based on vibration signal analysis by means of suitable signal processing techniques. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in industrial applications, particularly in the field of rail transport, remains scarcely investigated. This paper will address the diagnostics of bearings taken from the service after a long term operation on a high speed train. These worn bearings have been installed on a test-rig, consisting of a complete full-scale traction system of a high speed train, able to reproduce the effects of wheel-track interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is also proposed.
Resumo:
Rolling element bearings are the most critical components in the traction system of high speed trains. Monitoring their integrity is a fundamental operation in order to avoid catastrophic failures and to implement effective condition based maintenance strategies. Generally, diagnostics of rolling element bearings is usually performed by analyzing vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. Several papers have been published on this subject in the last two decades, mainly devoted to the development and assessment of signal processing techniques for diagnostics. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in specific industrial applications, particularly in rail industry, remains scarcely investigated. This paper is aimed at filling this knowledge gap, by addressing the diagnostics of bearings taken from the service after a long term operation on the traction system of a high speed train. Moreover, in order to test the effectiveness of the diagnostic procedures in the environmental conditions peculiar to the rail application, a specific test-rig has been built, consisting of a complete full-scale train traction system, able to reproduce the effects of wheeltrack interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is proposed, in order to limit their number.
Resumo:
Majority of the current research on the mounting system has emphasised on the low/medium power engine, rare work has been reported for the high-speed and heavy-duty engine, the vibration characteristics of which exhibits significantly increased complexity and uncertainty. In this work, a general dynamics model was firstly established to describe the dynamic properties of a mounting system with various numbers of mounts. Then, this model was employed for the optimization of the mounting system. A modified Powell conjugate direction method was developed to improve the optimization efficiency. Basing on the optimization results obtained from the theoretical model, a mounting system was constructed for a V6 diesel engine. The experimental measurement of the vibration intensity of the mounting systems shows excellent agreement with the theoretical calculations, indicating the validity of the model. This dynamics model opens a new avenue in assessing and designing the mounting system for a high-speed and heavy-duty engine. On the other hand, the delineated dynamics model, and the optimization algorithm should find wide applications for other mounting systems, such as the power transmission system which usually has various uncertain mounts.
Resumo:
Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.
Resumo:
A better understanding of the behaviour of prepared cane and bagasse, and the ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice, would help identify how to improve the current process. There are opportunities to decrease bagasse moisture from a milling unit. The behaviour of bagasse in chutes is poorly understood. Previous investigations have shown that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr-Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse is critical state behaviour similar to that for sand and clay. Progress has been made in the last 11 years towards implementing a mechanical model for bagasse in finite element software. The objective is to be able to correctly simulate various simple mechanical loading conditions measured in the laboratory. Combining these behaviours together is thought to have a high probability of reproducing the complicated stress conditions in a milling unit. This paper reports on progress made towards modelling the fifth and final (and most challenging) of the simple loading conditions: the shearing of heavily over-consolidated bagasse, using a specific model for bagasse in a multi-element simulation.
Resumo:
Purpose – Simple linear accounts of prescribing do not adequately address reasons “why” doctors prescribe psychotropic medication to people with intellectual disability (ID). Greater understanding of the complex array of factors that influence decisions to prescribe is needed. Design/methodology/approach – After consideration of a number of conceptual frameworks that have potential to better understand prescribing of psychotropic medication to adults with ID, an ecological model of prescribing was developed. A case study is used to outline how the model can provide greater understanding of prescribing processes. Findings – The model presented aims to consider the complexity and multi-dimensional nature of community-based psychotropic prescribing to adults with ID. The utility of the model is illustrated through a consideration of the case study. Research limitations/implications – The model presented is conceptual and is as yet untested. Practical implications – The model presented aims to capture the complexity and multi-dimensional nature of community-based psychotropic prescribing to adults with ID. The model may provide utility for clinicians and researchers as they seek clarification of prescribing decisions. Originality/value – The paper adds valuable insight into factors influencing psychotropic prescribing to adults with ID. The ecological model of prescribing extends traditional analysis that focuses on patient characteristics and introduces multi-level perspectives that may provide utility for clinicians and researchers.