950 resultados para multi-layer transfer-matrix


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multi-antenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the cellular base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, we propose a new power transfer policy, namely, best power beacon (BPB) power transfer. To characterize the power transfer reliability of the proposed policy, we derive new closed-form expressions for the exact power outage probability and the asymptotic power outage probability with large antenna arrays at PBs. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), and 2) nearest receiver selection (NRS). To assess the secrecy performance, we derive new expressions for the secrecy throughput considering the two receiver selection schemes using the BPB power transfer policies. We show that secrecy performance improves with increasing densities of PBs and D2D receivers because of a larger multiuser diversity gain. A pivotal conclusion is reached that BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An orthogonal vector approach is proposed for the synthesis of multi-beam directional modulation (DM) transmitters. These systems have the capability of concurrently projecting independent data streams into different specified spatial directions while simultaneously distorting signal constellations in all other directions. Simulated bit error rate (BER) spatial distributions are presented for various multi-beam system configurations in order to illustrate representative examples of physical layer security performance enhancement that can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of carboxyl functionalised multi-walled carbon nanotube (MWCNT-COOH) into a leading proprietary grade orthopaedic bone cement (Simplex PTM) at 0.1 wt% has been investigated. Resultant static and fatigue mechanical properties, in addition to thermal and polymerisation properties, have been determined. Significant improvements (p 0.001) in bending strength (42%), bending modulus (55%) and fracture toughness (22%) were demonstrated. Fatigue properties were improved (p 0.001), with mean number of cycles to failure and fatigue performance index being increased by 64% and 52%, respectively. Thermal necrosis index values at 44C and 55C were significantly reduced (p 0.001) (28% and 27%) versus the control. Furthermore, the onset of polymerisation increased by 58% (p < 0.001), as did the duration of the polymerisation reaction (52%). Peak energy during polymerisation increased by 672% (p < 0.001). Peak area of polymerisation increased by 116% (p < 0.001) indicating that the incorporation of MWCNT-COOH reduced the rate of polymerisation significantly. A non-significant reduction (8%) in percentage monomer conversion was also recorded. Raman spectroscopy clearly showed that the addition of MWCNT-COOH increased the ratio between normalised intensities of the G-Band and D-Band (IG/ID), and also increased the theoretical compressive strain (1.72%) exerted on the MWCNT-COOH by the Simplex PTM cement matrix. Therefore, demonstrating a level of chemical interactivity between the MWCNT-COOH and the Simplex PTM bone cement exists and consequently a more effective mechanism for successful transfer of mechanical load. The extent of homogenous dispersion of the MWCNT-COOH throughout the bone cement was determined using Raman mapping. Ke

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiative decay processes at cold and ultra cold temperatures for sulfur atoms colliding with protons are investigated. The MOLPRO quantum chemistry suite of codes was used to obtain accurate potential energies and transition dipole moments, as a function of internuclear distance, between low-lying states of the SH+ molecular cation. A multi-reference configuration-interaction approximation together with the Davidson correction is used to determine the potential energy curves and transition dipole moments, between the states of interest, where the molecular orbitals are obtained from state-averaged multi-configuration-self-consistent field calculations. The collision problem is solved approximately using an optical potential method to obtain radiative loss, and a fully two-channel quantum approach for radiative charge transfer. Cross sections and rate coefficients are determined for the first time for temperatures ranging from 10 μK up to 10 000 K. Results are obtained for all isotopes of sulfur, colliding with H+ and D+ ions and comparison is made to a number of other collision systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast and recently commissioned at the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 - 15 e/pixel/s), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, and up to 200 Hz when the CCD is windowed. ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution. We will present the current instrument set-up and parameters, observing modes, and future plans, including a new high QE camera allowing 15 Hz for Halpha. Interested parties should see https://habu.pst.qub.ac.uk/groups/arcresearch/wiki/de502/ROSA.html

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach for the multi-objective design optimisation of aerofoil profiles is presented. The proposed method aims to exploit the relative strengths of global and local optimisation algorithms, whilst using surrogate models to limit the number of computationally expensive CFD simulations required. The local search stage utilises a re-parameterisation scheme that increases the flexibility of the geometry description by iteratively increasing the number of design variables, enabling superior designs to be generated with minimal user intervention. Capability of the algorithm is demonstrated via the conceptual design of aerofoil sections for use on a lightweight laminar flow business jet. The design case is formulated to account for take-off performance while reducing sensitivity to leading edge contamination. The algorithm successfully manipulates boundary layer transition location to provide a potential set of aerofoils that represent the trade-offs between drag at cruise and climb conditions in the presence of a challenging constraint set. Variations in the underlying flow physics between Pareto-optimal aerofoils are examined to aid understanding of the mechanisms that drive the trade-offs in objective functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polymeric hydrogel containing a photoinduced electron transfer (PET) based probe for Zn(ii) has been formulated into the wells of a 96-well plate. Upon addition of Zn(ii) ions to selected wells, the fluorescence of the gel was observed to increase in a concentration dependent manner in the 0.25-1.75 mM range. The millimolar binding constant observed for this probe is higher than that reported for other Zn(ii) probes in the literature and offers the possibility to determine the concentration of this ion in environments where the Zn(ii) concentration is high. The combination of the multi-well plate set-up with fluorescence detection offers the possibility of high-throughput screening using low sample volumes in a timely manner. To the best of our knowledge, this is the first reported example of a polymeric hydrogel sensor for zinc with capability for use in fluorescence multi-well plate assay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind power is one of the most developed renewable energy resources worldwide. To integrate offshore wind farms to onshore grids, the high-voltage direct current (HVDC) transmission cables interfaced with voltage source converters (VSCs) are considered to be a better solution than conventional approaches. Proper DC voltage indicates successive power transfer. To connect more than one onshore grid, the DC voltage droop control is one of the most popular methods to share the control burden between different terminals. However, the challenges are that small droop gains will cause voltage deviations, while higher droop gain settings will cause large oscillations. This study aims to enhance the performance of the traditional droop controller by considering the DC cable dynamics. Based on the backstepping control concept, DC cables are modelled with a series of capacitors and inductors. The final droop control law is deduced step-by-step from the original remote side. At each step the control error from the previous step is considered. Simulation results show that both the voltage deviations and oscillations can be effectively reduced using the proposed method. Further, power sharing between different terminals can be effectively simplified such that it correlates linearly with the droop gains, thus enabling simple yet accurate system operation and control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a hierarchical energy management system for multi-source multi-product (MSMP) microgrids. Traditional energy hub based scheduling method is combined with a hierarchical control structure to incorporate transient characteristics of natural gas flow and dynamics of energy converters in microgrids. The hierarchical EMS includes a supervisory control layer, an optimizing control layer, and an execution control layer. In order to efficiently accommodate the systems multi time-scale characteristics, the optimizing control layer is decomposed into three sub-layers: slow, medium and fast. Thermal, gas and electrical management systems are integrated into the slow, medium, and fast control layer, respectively. Compared with wind energy, solar energy is easier to integrate and more suitable for the microgrid environment, therefore, potential impacts of the hierarchical EMS on MSMP microgrids is investigated based on a building energy system integrating photovoltaic and microturbines. Numerical studies indicate that by using a hierarchical EMS, MSMP microgrids can be economically operated. Also, interactions among thermal, gas, and electrical system can be effectively managed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-(aminoalkyl)-4-chloronaphthalene-
1,8-dicarboximides 1, N-
(aminoalkyl)-4-acetamidonaphthalene-
1,8-dicarboximides 3 and N,N'-bis(aminoalkyl)-
perylene-3,4:9,10-tetracarboxydiimides
4 show good fluorescent off ±
on switching in aqueous alcoholic solution
with protons as required for fluorescent
PET sensor design. The excitation
wavelengths lie in the ultraviolet
(lmaxˆ345 and 351 nm) for 1 and 3 and
in the blue-green (lmaxˆ528, 492 and
461 nm) for 4; the emission wavelengths
lie in the violet (lmaxˆ408 nm) for 1, in
the blue (lmaxˆ474 nm) for 3 and in the
yellow-orange (lmaxˆ543 and 583 nm)
for 4. Compound 4b shows substantial
fluorescence enhancement with protons
when immobilized in a poly(vinylchloride)
matrix, provided that 2-nitrophenyloctyl
ether plasticizer and potassium
tetrakis(4-chlorophenyl)borate additive
are present to prevent dye crystallization
and to facilitate proton diffusion
into the membrane, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper employs a unique extension-decomposition-aggregation (EDA) scheme to solve the formation flight control problem for multiple unmanned aerial vehicles (UAVs). The corresponding decentralised longitudinal and lateral formation autopilots are novelly designed to maintain the overall formation stability when encountering changes of the formation error and topologies. The concept of propagation layer number (PLN) is also proposed to provide an intuitive criterion to judge which type of formation topology is more suitable to minimise formation error propagation (FEP). The criterion states that the smaller the PLN of the formation is, the quicker the response to the formation error is. A smaller PLN also means that the resulting topology provides better prevention to the FEP. Simulation studies of formation flight of multiple Aerosonde UAVs demonstrate that the designed formation controller based on the EDA strategy performs satisfactorily in maintaining the overall formation stable, and the bidirectional partial-mesh topology is found to provide the best overall response to the formation error propagation based on the PLN criterion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nanocomposite porous electrode structure consisting of hierarchical iodine-doped zinc oxide (I-ZnO) aggregates combined with the two simple solution-processed interfacial modifications i.e. a ZnO compact layer (CL) and a TiO2 protective layer (PL) has been developed in order to understand electron transport and recombination in the photoanode matrix, together with boosting the conversion efficiency of I-ZnO based dye-sensitized solar cells (DSCs). Electrochemical impedance spectra demonstrate that ZnO CL pre-treatment and TiO2 PL post-treatment synergistically reduce charge-transfer resistance and suppress electron recombination. Furthermore, the electron lifetime in two combined modifications of IZnO + CL + PL photoelectrode is the longest in comparison with the other three photoelectrodes. As a consequence, the overall conversion efficiency of I-ZnO + CL + PL DSC is significantly enhanced to 6.79%, with a 36% enhancement compared with unmodified I-ZnO DSC. Moreover, the stability of I-ZnO + CL + PL cell is improved as compared to I-ZnO one. The mechanism of electron transfer and recombination upon the introduction of ZnO CL and TiO2 PL is also proposed in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Densely deployed WiFi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in WiFi networks and throughput efficiency degradation, densely deployed WiFi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to efficiently utilize scarce spectrum resources, by matching physical layer resources to traffic demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in WiFi networks. This approach, named SFCA (Sub-carrier Fine-grained Channel Access), adopts DOFDM (Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a sub-carrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more flexibility and higher frequency efficiency. The MAC layer uses a frequency-time domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA (an established access scheme) showing significant outperformance. Finally we present results for next generation 802.11ac WiFi networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between the face coat material of a mould and the titanium alloy will cause oxygen penetration during the casting and solidification process, resulting in the formation of an α-case interaction layer at the metal surface that influences the mechanical properties of the cast components. In this study, the influence of α-case thickness and loading positions in a Ti–6Al–4V (Ti64) alloy on metal hardness, impact properties and bending strength was investigated. The results showed that the metal surface α-case consisted of many coarse α laths which has a higher hardness than metal matrix. The mechanical properties of the alloy are influenced by the α-case. The alloy bending strength was observed to have changed linearly with the thickness of sample.