984 resultados para movement disorder
Resumo:
Cryoturbated Upper Chalk is a dichotomous porous medium wherein the intra-fragment porosity provides water storage and the inter-fragment porosity provides potential pathways for relatively rapid flow near saturation. Chloride tracer movement through 43 cm long and 45 cm diameter undisturbed chalk columns was studied at water application rates of 0.3, 1.0, and 1.5 cm h(-1). Microscale heterogeneity in effluent was recorded using a grid collection system consisting of 98 funnel-shaped cells each 3.5 cm in diameter. The total porosity of the columns was 0.47 +/- 0.02 m(3) m(-3), approximately 13% of pores were >15 mu m diameter, and the saturated hydraulic conductivity was 12.66 +/- 1.31 m day(-1). Although the column remained unsaturated during the leaching even at all application rates, proportionate flow through macropores increased as the application rate decreased. The number of dry cells (with 0 ml of effluent) increased as application rate decreased. Half of the leachate was collected from 15, 19 and 22 cells at 0.3, 1.0, 1.5 cm h(-1) application rates respectively. Similar breakthrough curves (BTCs) were obtained at all three application rates when plotted as a function of cumulative drainage, but they were distinctly different when plotted as a function of time. The BTCs indicate that the columns have similar drainage requirement irrespective of application rates, as the rise to the maxima (C/C-o) is almost similar. However, the time required to achieve that leaching requirement varies with application rates, and residence time was less in the case of a higher application rate. A two-region convection-dispersion model was used to describe the BTCs and fitted well (r(2) = 0.97-0-99). There was a linear relationship between dispersion coefficient and pore water velocity (correlation coefficient r = 0.95). The results demonstrate the microscale heterogeneity of hydrodynamic properties in the Upper Chalk. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Background: Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD).Methods: Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment.Results The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group.Conclusions: These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD.
Resumo:
We argue that impulsiveness is characterized by compromised timing functions such as premature motor timing, decreased tolerance to delays, poor temporal foresight and steeper temporal discounting. A model illustration for the association between impulsiveness and timing deficits is the impulsiveness disorder of attention-deficit hyperactivity disorder (ADHD). Children with ADHD have deficits in timing processes of several temporal domains and the neural substrates of these compromised timing functions are strikingly similar to the neuropathology of ADHD. We review our published and present novel functional magnetic resonance imaging data to demonstrate that ADHD children show dysfunctions in key timing regions of prefrontal, cingulate, striatal and cerebellar location during temporal processes of several time domains including time discrimination of milliseconds, motor timing to seconds and temporal discounting of longer time intervals. Given that impulsiveness, timing abnormalities and more specifically ADHD have been related to dopamine dysregulation, we tested for and demonstrated a normalization effect of all brain dysfunctions in ADHD children during time discrimination with the dopamine agonist and treatment of choice, methylphenidate. This review together with the new empirical findings demonstrates that neurocognitive dysfunctions in temporal processes are crucial to the impulsiveness disorder of ADHD and provides first evidence for normalization with a dopamine reuptake inhibitor.
Resumo:
This article examines the politics of place in relation to legal mobilization by the anti-nuclear movement. It examines two case examples - citizens' weapons inspections and civil disobedience strategies - which have involved the movement drawing upon the law in particular spatial contexts. The article begins by examining a number of factors which have been employed in recent social movement literature to explain strategy choice, including ideology, resources, political and legal opportunity, and framing. It then proceeds to argue that the issues of scale, space, and place play an important role in relation to framing by the movement in the two case examples. Both can be seen to involve scalar reframing, with the movement attempting to resist localizing tendencies and to replace them with a global frame. Both also involve an attempt to reframe the issue of nuclear weapons away from the contested frame of the past (unilateral disarmament) towards the more universal and widely accepted frame of international law.
Resumo:
Abstract: Instead of the political reading of the EU Constitution adopted by advocates of constitutional patriotism, this article examines the European economic constitution. The four single market freedoms can be used by the Court of Justice to strike down Member State laws which represent deeply held aspects of national cultural identity. The article examines whether the court does in fact act in this way and proceeds to argue that the issue of identity protection does not stop with the court. In those policy areas where the court is more interventionist, and its case-law is perceived as an identity threat, one is likely to find binding Treaty-based derogations. Where, in contrast, the effect of the court's case-law poses less of a threat, one is more likely to see non-binding declarations. The article examines a number of policy areas in which specific cultural derogations and declarations are to be found, including abortion, property acquisition, football and alcohol control.
Resumo:
Motivation: Intrinsic protein disorder is functionally implicated in numerous biological roles and is, therefore, ubiquitous in proteins from all three kingdoms of life. Determining the disordered regions in proteins presents a challenge for experimental methods and so recently there has been much focus on the development of improved predictive methods. In this article, a novel technique for disorder prediction, called DISOclust, is described, which is based on the analysis of multiple protein fold recognition models. The DISOclust method is rigorously benchmarked against the top.ve methods from the CASP7 experiment. In addition, the optimal consensus of the tested methods is determined and the added value from each method is quantified. Results: The DISOclust method is shown to add the most value to a simple consensus of methods, even in the absence of target sequence homology to known structures. A simple consensus of methods that includes DISOclust can significantly outperform all of the previous individual methods tested.