992 resultados para microvascular density
Resumo:
Based on unsteady diffusion kinetics, polyethylene(PE)-graft-polystyrene (PS) copolymers were designed and synthesized with a heterogeneous high yield titanium-based catalyst by copolymerization of ethylene with a PS-macromonomer using 1-hexene as a short chain agent to promote the incorporation of the PS-macromonomer. The presence of 1-hexene facilitated the diffusion of the PS-macromonomer, giving rise to the significantly increased incorporation of the PS-macromonomer. Compatibilization of blends of linear low density polyethylene (LLDPE)/poly(phenylene oxide) (PPO) with the PE-g-PS copolymer were investigated using scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA).
Resumo:
Possible changes in the structure and properties of maleated polyethylene (HDPE-MA) at different degrees of grafting (D.G.) were examined. At the level of 1.6 maleic anhydride (MA)/100 ethylene units E, 70-80% of crystallinity of the parent PE was retaine
Resumo:
Effect of hydrophobic oxide, containing =Si-CH=CH2 groups, on the radiation crosslinking of low density polyethylene (LDPE) has been studied. It was found that mechanical stability of irradiated LDPE containing improved SiO2 is higher than that of samples containing unimproved SiO2.
Resumo:
Surface tension and density of NaCl-NaF-RE2O, melts have been measured by means of maximum buble pressure and Archimedes methods. The results are expressed by two mathematic models. Mass fraction of RE2O5 in the melts from 0.0 to 0.6% and that of NaF/NaCl, 50-90%. This investigation shows that there might be com plexes in the melts. The information obtained can be used as a reference in the preparation of Al-RE alloys.
Resumo:
Epitaxial crystallization of high-density polyethylene (HDPE) on isotactic polypropylene (iPP) in solution-cast films has been investigated by electron microscopy. The specimen-tilt technique of electron microscopy has been used to study the structural relationship between HDPE and iPP crystals. HDPE exhibits different crystalline morphologies in the two basic types of iPP spherulite textures, cross-hatched and lathlike regions. In the former, the crystallographic c axis of HDPE lamellae is in the film plane, while in the latter, the c axis of HDPE crystallites is at an angle of about 50-degrees with the normal of the film. In both structural regions of iPP, however, the contact planes of epitaxial growth are (0 1 0) for iPP and (1 0 0) for HDPE.
Resumo:
Free-standing film of polyaniline with excellent mechanical and electrical properties has been successfully prepared by using the solution-casting method. The results show that its tensile strength, Young's modulus and elongation at break are about 87.9 MPa, 1563.9 MPa and 10.2%, respectively. It is essential that the soluble polyaniline should be appropriately treated in some suitable organic solvents before making a free-standing film. Films having lustrous, smooth surface, high density and good flexibili...
Resumo:
CARBON
Resumo:
POPULATION-DYNAMICS; FOOD; FISH
Resumo:
An on-line controlled 7 1 sterilizable photobioreactor was used for the optimisation of a culture of gametophytes of Undaria pinnatifida. The gametophytes, which had been stored for three years in a culture cabinet at 16 degreesC, could rapidly grow in the photobioreactor under controlled conditions. The rate of increase of dissolved oxygen and pH were used to monitor the photosynthetic activity. Optimal gametophytes density changed varying the light intensity. The optimal cell densities were 3.24 and 3.45 g FW l(-1) when the cultures were exposed to 61.7 and 82.3 muE m(-2) s(-1), respectively. The optimal cell density was higher under a high photon flux density (PFD) than under low PFD. On the other hand, the optimal light intensities were different for different cell density cultures. The light saturation point was higher at high cell density cultures than at low cell density cultures. The optimal rotational speed was 150 rpm for high cell density culture in the photobioreactor. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
To determine the optimal larval density for hatchery culture of the clam Meretrix meretrix, experiments with stocking densities of 5, 10, 20, 40 and 60 larvae ml(-1) were designed, which included the developmental stages from D-veliger to 8 days postsettlement. Shell length, settlement time and survival rate of the larvae were recorded. Results showed that, at each sampling time, larvae reared at the highest density had the smallest mean size, whereas larvae reared at the lowest density had the largest mean size. Statistical differences in mean shell length at different stocking densities appeared from day 2, and greater differences occurred with increased culture time. Specific growth rate (SGR) in the rapid growing stage (day 0-3) was negatively correlated with density; however, no correlation was found between SGR and density in the slow growing stage (days 3-7). Settlement time was prolonged and shell length of settled larvae decreased as density increased. However, larval survival rate (74.8-79.1%) was independent of stocking density. Results showed that a high stocking density, in the designated range, is feasible for larval culture of the clam M. meretrix. However, for large-scale culture, in the interest of costs and safety, a stocking density of 10-20 larvae ml(-1) is recommended. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Interfacial internal waves in a three-layer density-stratified fluid are investigated using a singular method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. as expected, the third-order solutions describe the third-order nonlinear modification and the third-order nonlinear interactions between the interfacial waves. The wave velocity depends on not only the wave number and the depth of each layer but also on the wave amplitude.
Resumo:
In this paper, internal waves in three-layer stratified fluid are investigated by using a perturbation method, and the second-order asymptotic solutions of the velocity potentials and the second-order Stokes solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. As expected, the first-order solutions are consistent with ordinary linear theoretical results, and the second-order solutions describe the second-order modification on the linear theory and the interactions between the two interfacial waves. Both the first-order and second-order solutions derived depend on the depths and densities of the three-layer fluid. It is also noted that the solutions obtained from the present work include the theoretical results derived by Umeyama as special cases.