970 resultados para microflow cytometry
Resumo:
Profiling miRNA expression in cells that directly contribute to human disease pathogenesis is likely to aid the discovery of novel drug targets and biomarkers. However, tissue heterogeneity and the limited amount of human diseased tissue available for research purposes present fundamental difficulties that often constrain the scope and potential of such studies. We established a flow cytometry-based method for isolating pure populations of pathogenic T cells from bronchial biopsy samples of asthma patients, and optimized a high-throughput nano-scale qRT-PCR method capable of accurately measuring 96 miRNAs in as little as 100 cells. Comparison of circulating and airway T cells from healthy and asthmatic subjects revealed asthma-associated and tissue-specific miRNA expression patterns. These results establish the feasibility and utility of investigating miRNA expression in small populations of cells involved in asthma pathogenesis, and set a precedent for application of our nano-scale approach in other human diseases. The microarray data from this study (Figure 7) has been submitted to the NCBI Gene Expression Omnibus (GEO; http://ncbi.nlm.nih.gov/geo) under accession no. GSE31030.
Resumo:
Objective:The aim of the study is to determine the neuroglial differentiation potential of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) from preterm birth when compared to term delivery.Study Design:The WJ-MSCs from umbilical cords of preterm birth and term controls were isolated and induced into neural progenitors. The cells were analyzed for neuroglial markers by flow cytometry, real-time polymerase chain reaction, and immunocytochemistry. Results:Independent of gestational age, a subset of WJ-MSC displayed the neural progenitor cell markers Nestin and Musashi-1 and the mature neural markers microtubule-associated protein 2, glial fibrillary acidic protein, and myelin basic protein. Neuroglial induction of WJ-MSCs from term and preterm birth resulted in the enhanced transcription of Nestin and Musashi-1.Conclusions:Undifferentiated WJ-MSCs from preterm birth express neuroglial markers and can be successfully induced into neural progenitors similar to term controls. Their potential use as cellular graft in neuroregenerative therapy for peripartum brain injury in preterm birth has to be tested.
Resumo:
BACKGROUND ; AIMS: Hints, histidine triad nucleotide-binding proteins, are adenosine monophosphate-lysine hydrolases of uncertain biological function. Here we report the characterization of human Hint2. METHODS: Tissue distribution was determined by real-time quantitative polymerase chain reaction and immunoblotting, cellular localization by immunocytochemistry, and transfection with green fluorescent protein constructs. Enzymatic activities for protein kinase C and adenosine phosphoramidase in the presence of Hint2 were measured. HepG2 cell lines with Hint2 overexpressed or knocked down were established. Apoptosis was assessed by immunoblotting for caspases and by flow cytometry. Tumor growth was measured in SCID mice. Expression in human tumors was investigated by microarrays. RESULTS: Hint2 was predominantly expressed in liver and pancreas. Hint2 was localized in mitochondria. Hint2 hydrolyzed adenosine monophosphate linked to an amino group (AMP-pNA; k(cat):0.0223 s(-1); Km:128 micromol/L). Exposed to apoptotic stress, fewer HepG2 cells overexpressing Hint2 remained viable (32.2 +/- 0.6% vs 57.7 +/- 4.6%), and more cells displayed changes of the mitochondrial membrane potential (87.8 +/- 2.35 vs 49.7 +/- 1.6%) with more cleaved caspases than control cells. The opposite was observed in HepG2 cells with knockdown expression of Hint2. Subcutaneous injection of HepG2 cells overexpressing Hint2 in SCID mice resulted in smaller tumors (0.32 +/- 0.13 g vs 0.85 +/- 0.35 g). Microarray analyses revealed that HINT2 messenger RNA is downregulated in hepatocellular carcinomas (-0.42 +/- 0.58 log2 vs -0.11 +/- 0.28 log2). Low abundance of HINT2 messenger RNA was associated with poor survival. CONCLUSION: Hint2 defines a novel class of mitochondrial apoptotic sensitizers down-regulated in hepatocellular carcinoma.
Resumo:
Humoral immunity in response to an octavalent O-polysaccharide-toxin A conjugate Pseudomonas aeruginosa vaccine is well studied, and a phase III clinical study in cystic fibrosis (CF) patients is currently ongoing. In contrast, little is known about cellular immunity induced by this vaccine. Fifteen healthy volunteers were immunized on days 1 and 60. Parameters of cellular immunity were studied before vaccination on day 1, and on day 74. Analyses included flow cytometry of whole blood and antigen-induced proliferation of and cytokine production by lymphocyte cultures. The effects of immunization on the composition of peripheral blood lymphocytes as determined by flow cytometry were minor. In contrast, after immunization a highly significant increase of proliferation in response to stimulation with detoxified toxin A was noted: the stimulation index rose from 1.4 on day 1 to 42.2 on day 74 (restimulation with 0.4 microg/ml; P = 0.003). Immunization led to significant production of interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha by antigen-stimulated lymphocytes. In contrast, no significant induction of interleukin (IL)-4 or IL-10 was observed. In conclusion, immunization of healthy volunteers led to activation of cellular immunity including strong antigen-specific proliferation and cytokine production. In CF patients priming of the cellular immune system towards a Th1-like pattern would be of potential advantage. Therefore, confirmatory analyses in immunized CF patients with and without chronic infection with P. aeruginosa are foreseen.
Resumo:
Microglial cells represent the endogenous immune system of the central nervous system (CNS). Upon pathological insults they reveal their immunological potential aimed at regaining homeostasis. These reactions have long been believed to follow a uniform and unspecific pattern which is irrespective to the underlying disease entity. Evidence is growing that this view seriously underrates microglial competence as the defenders of the CNS. In the present study, microglial cells of 47 dogs were examined ex vivo by means of flow cytometry. Ex vivo examination included immunophenotypic characterization using eight different surface markers and functional studies such as phagocytosis assay and the reactive oxygen species (ROS) generation test. The dogs were classified according to their histopathological diagnoses in disease categories (controls, canine distemper virus (CDV) induced demyelination, other diseases of the CNS) and results of microglial reaction profiles were compared. Immunophenotypic characterization generally revealed relative high conformity in the microglial disease response among the different groups, however the functional response was shown to be more specific. Dogs with intracranial inflammation and dogs with demyelination showed an enhanced phagocytosis, whereas a significant up-regulation of ROS generation was found in dogs with demyelination due to CDV infection. This strongly suggests a specific response of microglia to infection with CDV in the settings of our study and underlines the pivotal role of microglial ROS generation in the pathogenesis of demyelinating diseases, such as canine distemper.
Resumo:
BACKGROUND: Quinolones are widely used, broad spectrum antibiotics that can induce immediate- and delayed-type hypersensitivity reactions, presumably either IgE or T cell mediated, in about 2-3% of treated patients. OBJECTIVE: To better understand how T cells interact with quinolones, we analysed six patients with delayed hypersensitivity reactions to ciprofloxacin (CPFX), norfloxacin (NRFX) or moxifloxacin (MXFX). METHODS: We confirmed the involvement of T cells in vivo by patch test and in vitro by means of the lymphocyte proliferation test (LTT). The nature of the drug-T cell interaction as well as the cross-reactivity with other quinolones were investigated through the generation and analysis (flow cytometry and proliferation assays) of quinolone-specific T cell clones (TCC). RESULTS: The LTT confirmed the involvement of T cells because peripheral blood mononuclear cells (PBMC) mounted an enhanced in vitro proliferative response to CPFX and/or NRFX or MXFX in all patients. Patch tests were positive after 24 and 48 h in three out of the six patients. From two patients, CPFX- and MXFX-specific CD4(+)/CD8(+) T cell receptor (TCR) alphabeta(+) TCC were generated to investigate the nature of the drug-T cell interaction as well as the cross-reactivity with other quinolones. The use of eight different quinolones as antigens (Ag) revealed three patterns of cross-reactivity: clones exclusively reacting with the eliciting drug, clones with a limited cross-reactivity and clones showing a broad cross-reactivity. The TCC recognized quinolones directly without need of processing and without covalent association with the major histocompatability complex (MHC)-peptide complex, as glutaraldehyde-fixed Ag-presenting cells (APC) could present the drug and washing quinolone-pulsed APC removed the drug, abrogating the reactivity of quinolone-specific TCC. CONCLUSION: Our data show that T cells are involved in delayed immune reactions to quinolones and that cross-reactivity among the different quinolones is frequent.
Resumo:
OBJECTIVE: To determine whether a specifically designed bispecific (Bcl-2/Bcl-xL) antisense oligonucleotide (ASO) induces apoptosis and enhances chemosensitivity in human prostate cancer LNCaP cells, as Bcl-2 and Bcl-xL are both anti-apoptotic genes associated with treatment resistance and tumour progression in many malignancies, including prostate cancer. MATERIALS AND METHODS: Inhibition of Bcl-2 and Bcl-xL expression by the bispecific ASO was evaluated using real-time reverse transcription-polymerase chain reaction and Western blotting, while growth inhibition and induction of apoptosis were analysed by a crystal violet assay, flow cytometry and Western blotting of apoptosis-relevant proteins. The effect of combined treatment with bispecific ASO and chemotherapy or small-interference RNA (siRNA) targeting the clusterin gene was also investigated. RESULTS: Bispecific ASO reduced Bcl-2 and Bcl-xL expression in LNCaP cells in a dose-dependent manner. There was cell growth inhibition, increases in the sub-G0-G1 fraction, and cleavage of caspase-3 and poly(ADP-Ribose) polymerase proteins in LNCaP cells after bispecific ASO treatment. Interestingly, Bcl-2/Bcl-xL bispecific ASO treatment also resulted in the down-regulation of Mcl-1 and up-regulation of Bax. The sensitivity of LNCaP cells to mitoxantrone, docetaxel or paclitaxel was significantly increased, reducing the 50% inhibitory concentration by 45%, 80% or 90%, respectively. Furthermore, the apoptotic induction by Bcl-2/Bcl-xL bispecific ASO was synergistically enhanced by siRNA-mediated inhibition of clusterin, a cytoprotective chaperone that interacts with and inhibits activated Bax. CONCLUSIONS: These findings support the concept of the targeted suppression of Bcl-2 anti-apoptotic family members using multitarget inhibition strategies for prostate cancer, through the effective induction of apoptosis.
Resumo:
In this study, we investigated if monolayer expansion of adult human articular chondrocytes (AHAC) on specific substrates regulates cell phenotype and post-expansion multilineage differentiation ability. AHAC isolated from cartilage biopsies of five donors were expanded on plastic dishes (PL), on dishes coated with collagen type II (COL), or on slides coated with a ceramic material (Osteologic, OS). The phenotype of expanded chondrocytes was assessed by flow cytometry and real-time RT-PCR. Cells were then cultured in previously established conditions promoting differentiation toward the chondrogenic or osteogenic lineage. AHAC differentiation was assessed histologically, biochemically, and by real-time RT-PCR. As compared to PL-expanded AHAC, those expanded on COL did not exhibit major phenotypic changes, whereas OS-expanded cells expressed (i) higher bone sialoprotein (BSP) (22.6-fold) and lower collagen type II (9.3-fold) mRNA levels, and (ii) lower CD26, CD90 and CD140 surface protein levels (1.4-11.1-fold). Following chondrogenic differentiation, COL-expanded AHAC expressed higher mRNA levels of collagen type II (2.3-fold) and formed tissues with higher glycosaminoglycan (GAG) contents (1.7-fold), whereas OS-expanded cells expressed 16.5-fold lower collagen type II and generated pellets with 2.0-fold lower GAG contents. Following osteogenic differentiation, OS-expanded cells expressed higher levels of BSP (3.9-fold) and collagen type I (2.8-fold) mRNA. In summary, AHAC expansion on COL or OS modulated the de-differentiated cell phenotype and improved the cell differentiation capacity respectively toward the chondrogenic or osteogenic lineage. Phenotypic changes induced by AHAC expansion on specific substrates may mimic pathophysiological events occurring at different stages of osteoarthritis and may be relevant for the engineering of osteochondral tissues.
Resumo:
BACKGROUND: The aim of the study was to evaluate the antiproliferative potency of Viscum album extract (VA-E) in human bladder carcinoma cell lines with regard to its possible use for intravesical therapy of superficial bladder cancer. MATERIALS AND METHODS: Proliferation (MTT-test or 3H-thymidine incorporation), necrotic disintegration (3H-thymidine release of prelabelled cells) and portions of apoptotic and/or necrotic cells (Annexin-V binding, propidium iodide (PI) labelling and DNA-fluorescence profiles by flow cytometry) were measured in four different human bladder carcinoma cell lines (T24, TCCSUP, J82 and UM-UC3) cultured in vitro. RESULTS: Antiproliferative effects of VA-E were observed in the four bladder carcinoma cell lines tested. Metabolic activity could also be completely abrogated by short-time contact of the cells with VA-E. Apoptosis and necrosis, as underlying mechanisms of action, were differentially expressed by the different cell lines. CONCLUSION: VA-E and cytotoxic proteins, i.e., mistletoe lectins (ML) and viscotoxins (VT), were able to block the growth of bladder carcinoma cells. Together with the immunomodulating properties of VA-E, the observed antiproliferative potency might give a rationale for the topical intravesical application of VA-E for the treatment of superficial bladder cancer.
Resumo:
BACKGROUND: The KEL2/KEL1 (k/K) blood group polymorphism represents 578C>T in the KEL gene and Thr193Met in the Kell glycoprotein. Anti-KEL1 can cause severe hemolytic disease of the fetus and newborn. Molecular genotyping for KEL*1 is routinely used for assessing whether a fetus is at risk. Red blood cells (RBCs) from a KEL:1 blood donor (D1) were found to have abnormal KEL1 expression during evaluation of anti-KEL1 reagents. STUDY DESIGN AND METHODS: Kell genotyping methods, including KEL exon 6 direct sequencing, were applied. KEL cDNA from D1 was sequenced. Flow cytometry was used to assess KEL1 and KEL2 RBC expression. RESULTS: RBCs from the donor, her mother, and an unrelated donor gave weak or negative reactions with some anti-KEL1 reagents. Other Kell-system antigens appeared normal. The three individuals were homozygous for KEL C578 (KEL*2) but heterozygous for a 577A>T transversion, encoding Ser193. They appeared to be KEL*2 homozygotes by routine genotyping methods. Flow cytometry revealed weak KEL1 expression and normal KEL2, similar to that of KEL*2 homozygotes. CONCLUSION: Ser193 in the Kell glycoprotein appears to result in expression of abnormal KEL1, in addition to KEL2. The mutation is not detected by routine Kell genotyping methods and, because of unpredicted KEL1 expression, could lead to a misdiagnosis.
Resumo:
In the current study perfusions of an isolated cotyledon of term placenta using standard medium were compared to medium containing xanthine plus xanthine oxidase (X+XO), which generates reactive oxygen species (ROS). A time-dependant increase in the levels of different cytokines (TNF-alpha, IL-1ss, IL-6, IL-8 and IL-10) was observed between 1 and 7h with more than 90% of the total recovered from the maternal compartment with no significant difference between the 2 groups. For 8-iso-PGF2alpha 90% of the total was found in the fetal compartment and a significantly higher total release was seen in the X+XO group. Microparticles (MPs) isolated from the maternal circuit were identified by flow cytometry as trophoblastic sheddings, whereas MPs from the fetal circuit were predominantly derived from endothelial cells. More than 90% of the total of MPs was found in the maternal circuit. The absolute amount of the total as well as the maternal fraction were significantly higher in the X+XO group. Immunohistochemistry (IHC) of the perfused tissue revealed staining for IL-1beta of villous stroma cells, which became clearly more pronounced in experiments with X+XO. Western blot of tissue homogenate revealed 2 isoforms of IL-1beta at 17 and 31kD. In X+XO experiments there was a tendency for increased expression of antioxidant enzymes in the tissue. Western blot of MPs from the maternal circuit showed increased expression of antioxidant enzymes in the X+XO group and for IL-1beta only the 17kD band was detected. In vitro reperfusion of human placental tissue results in mild tissue injury suggestive of oxidative stress. In view of the increased generation of ROS in perfused tissue with further increase under the influence of X+XO, the overall manifestation of oxidative stress remained rather mild. Preservation of antioxidant capacity of human placental tissue could be a sign of integrity of structure and function being maintained in vitro by dual perfusion of an isolated cotyledon. The observed changes resemble findings seen in placentae from preeclampsia.
Resumo:
OBJECTIVE: The purpose of this study was to assess the feasibility of autologous stem cell transplantation in fetal sheep and to compare short-term engraftment of allogeneic and autologous fetal liver stem cells in an immunocompetent large animal model. STUDY DESIGN: Fetal liver stem cells were collected from preimmune sheep fetuses with an open or ultrasound-guided technique. After being labeled with PKH26, the cells were transplanted intraperitoneally into allogeneic and autologous fetal recipients at 48 to 64 days of gestation. Engraftment was determined by flow cytometry and real-time polymerase chain reaction 1 to 2 weeks after transplantation. RESULTS: Fetal loss rate was 29% (allogeneic transplantation) and 73% (autologous transplantation). Engraftment of donor cells was found in all fetuses, with a level of < or =4.7% in fetal liver, spleen, bone marrow, blood and thymus. Overall, there was no difference between allogeneic and autologous grafts. CONCLUSION: Autologous in utero transplantation of fetal liver stem cells in fetal sheep is feasible, but yields a high loss rate. Differences in the major histocompatibility complex between donor and recipient seems not to have a major impact on stem cell engraftment early in gestation; major histocompatibility complex-independent donor/host competition might be responsible for low engraftment in immunocompetent recipients.
Resumo:
Glanzmann's thrombasthenia (GT) arises from a qualitative or quantitative defect in the GPIIb-IIIa complex (integrin alphaIIbbeta3), the mediator of platelet aggregation. We describe a patient in whom clinical and laboratory findings typical of type I GT were found together with a second pathology involving neurological and other complications symptomatic of tuberous sclerosis. Analysis of platelet proteins by Western blotting revealed trace amounts of normally migrating GPIIb and equally small amounts of GPIIIa of slightly slower than normal migration. Flow cytometry confirmed a much decreased binding to platelets of monoclonal antibodies to GPIIb, GPIIIa or GPIIb-IIIa, and an antibody to the alphav subunit also showed decreased binding. Nonradioactive PCR single-strand conformation polymorphism analysis followed by direct sequencing of PCR-amplified DNA fragments showed a homozygous point mutation (T to C) at nucleotide 1722 of GPIIIa cDNA and which led to a Cys542-->Arg substitution in the GPIIIa protein. The mutation gave rise to a HinP1 I restriction site in exon 11 of the GPIIIa gene and allele-specific restriction enzyme analysis of family members confirmed that a single mutated allele was inherited from each parent. This amino acid substitution presumably changes the capacity for disulphide bond formation within the cysteine-rich core region of GPIIIa and its study will provide new information on GPIIb-IIIa and alphavbeta3 structure and biosynthesis.
Resumo:
An increased or disturbed activation and aggregation of platelets plays a major role in the pathophysiology of thrombosis and haemostasis and is related to cardiovascular disease processes. In addition to qualitative disturbances of platelet function, changes in thrombopoiesis or an increased elimination of platelets, (e. g., in autoimmune thrombocytopenia), are also of major clinical relevance. Flow cytometry is increasingly used for the specific characterisation of phenotypic alterations of platelets which are related to cellular activation, haemostatic function and to maturation of precursor cells. These new techniques also allow the study of the in vitro response of platelets to stimuli and the modification thereof under platelet-targeted therapy as well as the characterisation of platelet-specific antibodies. In this protocol, specific flow cytometric techniques for platelet analysis are recommended based on a description of the current state of flow cytometric methodology. These recommendations are an attempt to promote the use of these new techniques which are at present broadly evaluated for diagnostic purposes. Furthermore, the definition of the still open questions primarily related to the technical details of the method should help to promote the multi-center evaluation of procedures with the goal to finally develop standardized operation procedures as the basis of interlaboratory reproducibility when applied to diagnostic testing.
Resumo:
Simple collagen-related peptides (CRPs) containing a repeat Gly-Pro-Hyp sequence are highly potent platelet agonists. Like collagen, they must exhibit tertiary (triple-helical) and quaternary (polymeric) structure to activate platelets. Platelet signaling events induced by the peptides are the same as most of those induced by collagen. The peptides do not recognize the alpha 2 beta 1 integrin. To identify the signaling receptor involved, we have evaluated the response to the CRP, Gly-Lys-Hyp(Gly-Pro-Hyp)10-Gly-Lys-Hyp-Gly of platelets with defined functional deficiencies. These studies exclude a primary recognition role for CD36, von Willebrand factor (vWF), or glycoprotein (GP) IIb/IIIa. Thus, both CD36 and vWF-deficient platelets exhibited normal aggregation, normal fibrinogen binding, and normal expression of CD62 and CD63, measured by flow cytometry, in response to the peptide, and there was normal expression of CD62 and CD63 on thrombasthenic platelets. In contrast, GPVI-deficient platelets were totally unresponsive to the peptide, indicating that this receptor recognizes the Gly-Pro-Hyp sequence in collagen. GPVI-deficient platelets showed some fibrinogen binding in response to collagen but failed to aggregate and to express CD62 and CD63. Collagen, but not CRP-XL, contains binding sites for alpha 2 beta 1. Therefore, it is possible that collagen still induces some signaling via alpha 2 beta 1, leading to activation of GPIIb/IIIa. Our findings are consistent with a two-site, two-step model of collagen interaction with platelets involving recognition of specific sequences in collagen by an adhesive receptor such as alpha 2 beta 1 to arrest platelets under flow and subsequent recognition of another specific collagen sequence by an activatory receptor, namely GPVI.