997 resultados para marine carbon cycling
Underway physical oceanography and carbon dioxide measurements during COLIBRI cruise Colibri_2007_08
Resumo:
Recent studies have suggested that the marine contribution of methane from shallow regions and melting marine terminating glaciers may have been underestimated. Here we report on methane sources and potential sinks associated with methane seeps in Cumberland Bay, South Georgia's largest fjord system. The average organic carbon content in the upper 8 meters of the sediment is around 0.65 wt.%; this observation combined with Parasound data suggest that the methane gas accumulations probably originate from peat-bearing sediments currently located several tens of meters below the seafloor. Only one of our cores indicates upward advection; instead most of the methane is transported via diffusion. Sulfate and methane flux estimates indicate that a large fraction of methane is consumed by anaerobic oxidation of methane (AOM). Carbon cycling at the sulfate-methane transition (SMT) results in a marked fractionation of the d13C-CH4 from an estimated source value of -65 per mil to a value as low as -96 per mil just below the SMT. Methane concentrations in sediments are high, especially close to the seepage sites (~40 mM); however, concentrations in the water column are relatively low (max. 58 nM) and can be observed only close to the seafloor. Methane is trapped in the lowermost water mass, however, measured microbial oxidation rates reveal very low activity with an average turnover of 3.1 years. We therefore infer that methane must be transported out of the bay in the bottom water layer. A mean sea-air flux of only 0.005 nM/m²/s confirms that almost no methane reaches the atmosphere.
Resumo:
Current models of the global carbon cycle lack natural mechanisms to explain known large, transient shifts in past records of the stable carbon-isotope ratio (delta13C) of carbon reservoirs. The injection into the atmosphere of ~1,200-2,000 gigatons of carbon, as methane from the decomposition of sedimentary methane hydrates, has been proposed to explain a delta13C anomaly associated with high-latitude warming and changes in marine and terrestrial biota near the Palaeocene-Eocene boundary, about 55 million years ago. These events may thus be considered as a natural 'experiment' on the effects of transient greenhouse warming. Here we use physical, chemical and spectral analyses of a sediment core from the western North Atlantic Ocean to show that two-thirds of the carbon-isotope anomaly occurred within no more than a few thousand years, indicating that carbon was catastrophically released into the ocean and atmosphere. Both the delta13C anomaly and biotic changes began between 54.93 and 54.98 million years ago, and are synchronous in oceans and on land. The longevity of the delta13C anomaly suggests that the residence time of carbon in the Palaeocene global carbon cycle was ~120 thousand years, which is similar to the modelled response after a massive input of methane. Our results suggest that large natural perturbations to the global carbon cycle have occurred in the past-probably by abrupt failure of sedimentary carbon reservoirs-at rates that are similar to those induced today by human activity.
Resumo:
For much of the Mesozoic record there has been an inconclusive debate on the possible global significance of isotopic proxies for environmental change and of sequence stratigraphic depositional sequences. We present a carbon and oxygen isotope and elemental record for part of the Early Jurassic based on marine benthic and nektobenthic molluscs and brachiopods from the shallow marine succession of the Cleveland Basin, UK. The invertebrate isotope record is supplemented with carbon isotope data from fossil wood, which samples atmospheric carbon. New data elucidate two major global carbon isotope events, a negative excursion of ~2 per mil at the Sinemurian-Pliensbachian boundary, and a positive excursion of ~2 per mil in the Late Pliensbachian. The Sinemurian-Pliensbachian boundary event is similar to the slightly younger Toarcian Oceanic Anoxic Event and is characterized by deposition of relatively deepwater organic-rich shale. The Late Pliensbachian strata by contrast are characterized by shallow marine deposition. Oxygen isotope data imply cooling locally for both events. However, because deeper water conditions characterize the Sinemurian-Pliensbachian boundary in the Cleveland Basin the temperature drop is likely of local significance; in contrast a cool Late Pliensbachian shallow seafloor agrees with previous inference of partial icehouse conditions. Both the large-scale, long-term and small-scale, short-duration isotopic cycles occurred in concert with relative sea level changes documented previously from sequence stratigraphy. Isotope events and the sea level cycles are concluded to reflect processes of global significance, supporting the idea of an Early Jurassic in which cyclic swings from icehouse to greenhouse and super greenhouse conditions occurred at timescales from 1 to 10 Ma.