958 resultados para manned and unmanned aircraft
Resumo:
Space-based (satellite, scientific probe, space station, etc.) and millimeter – to – microscale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degradation of performance of shear/pressure driven condensers and boilers due to non-desirable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies. Shear/pressure driven condensing and boiling flow experiments are carried out in horizontal mm-scale channels with heat exchange through the bottom surface. The sides and top of the flow channel are insulated. The fluid is FC-72 from 3M Corporation.
Resumo:
We introduce a new boundary layer formalism on the basis of which a class of exact solutions to the Navier–Stokes equations is derived. These solutions describe laminar boundary layer flows past a flat plate under the assumption of one homogeneous direction, such as the classical swept Hiemenz boundary layer (SHBL), the asymptotic suction boundary layer (ASBL) and the oblique impingement boundary layer. The linear stability of these new solutions is investigated, uncovering new results for the SHBL and the ASBL. Previously, each of these flows had been described with its own formalism and coordinate system, such that the solutions could not be transformed into each other. Using a new compound formalism, we are able to show that the ASBL is the physical limit of the SHBL with wall suction when the chordwise velocity component vanishes while the homogeneous sweep velocity is maintained. A corresponding non-dimensionalization is proposed, which allows conversion of the new Reynolds number definition to the classical ones. Linear stability analysis for the new class of solutions reveals a compound neutral surface which contains the classical neutral curves of the SHBL and the ASBL. It is shown that the linearly most unstable Görtler–Hämmerlin modes of the SHBL smoothly transform into Tollmien–Schlichting modes as the chordwise velocity vanishes. These results are useful for transition prediction of the attachment-line instability, especially concerning the use of suction to stabilize boundary layers of swept-wing aircraft.
Resumo:
Currently, most cosmic ray data are obtained by detectors on satellites, aircraft, high-altitude balloons and ground (neutron monitors). In our work, we examined whether Liulin semiconductor spectrometers (simple silicon planar diode detectors with spectrometric properties) located at high mountain observatories could contribute new information to the monitoring of cosmic rays by analyzing data from selected solar events between 2005 and 2013. The decision thresholds and detection limits of these detectors placed at Jungfraujoch (Switzerland; 3475 m a.s.l.; vertical cut-off rigidity 4.5 GV) and Lomnicky stıt (Slovakia; 2633 m a.s.l.; vertical cut-off rigidity 3.84 GV) highmountain observatories were determined. The data showed that only the strongest variations of the cosmic ray flux in this period were detectable. The main limitation in the performance of these detectors is their small sensitive volume and low sensitivity of the PIN photodiode to neutrons.
Resumo:
Introduction. Selectively manned units have a long, international history, both military and civilian. Some examples include SWAT teams, firefighters, the FBI, the DEA, the CIA, and military Special Operations. These special duty operators are individuals who perform a highly skilled and dangerous job in a unique environment. A significant amount of money is spent by the Department of Defense (DoD) and other federal agencies to recruit, select, train, equip and support these operators. When a critical incident or significant life event occurs, that jeopardizes an operator's performance; there can be heavy losses in terms of training, time, money, and potentially, lives. In order to limit the number of critical incidents, selection processes have been developed over time to “select out” those individuals most likely to perform below desired performance standards under pressure or stress and to "select in" those with the "right stuff". This study is part of a larger program evaluation to assess markers that identify whether a person will fail under the stresses in a selectively manned unit. The primary question of the study is whether there are indicators in the selection process that signify potential negative performance at a later date. ^ Methods. The population being studied included applicants to a selectively manned DoD organization between 1993 and 2001 as part of a unit assessment and selection process (A&S). Approximately 1900 A&S records were included in the analysis. Over this nine year period, seventy-two individuals were determined to have had a critical incident. A critical incident can come in the form of problems with the law, personal, behavioral or family problems, integrity issues, and skills deficit. Of the seventy-two individuals, fifty-four of these had full assessment data and subsequent supervisor performance ratings which assessed how an individual performed while on the job. This group was compared across a variety of variables including demographics and psychometric testing with a group of 178 individuals who did not have a critical incident and had been determined to be good performers with positive ratings by their supervisors.^ Results. In approximately 2004, an online pre-screen survey was developed in the hopes of preselecting out those individuals with items that would potentially make them ineligible for selection to this organization. This survey has aided the organization to increase its selection rates and save resources in the process. (Patterson, Howard Smith, & Fisher, Unit Assessment and Selection Project, 2008) When the same prescreen was used on the critical incident individuals, it was found that over 60% of the individuals would have been flagged as unacceptable. This would have saved the organization valuable resources and heartache.^ There were some subtle demographic differences between the two groups (i.e. those with critical incidents were almost twice as likely to be divorced compared with the positive performers). Upon comparison of Psychometric testing several items were noted to be different. The two groups were similar when their IQ levels were compared using the Multidimensional Aptitude Battery (MAB). When looking at the Minnesota Multiphasic Personality Inventory (MMPI), there appeared to be a difference on the MMPI Social Introversion; the Critical Incidence group scored somewhat higher. When analysis was done, the number of MMPI Critical Items between the two groups was similar as well. When scores on the NEO Personality Inventory (NEO) were compared, the critical incident individuals tended to score higher on Openness and on its subscales (Ideas, Actions, and Feelings). There was a positive correlation between Total Neuroticism T Score and number of MMPI critical items.^ Conclusions. This study shows that the current pre-screening process is working and would have saved the organization significant resources. ^ If one was to develop a profile of a candidate who potentially could suffer a critical incident and subsequently jeopardize the unit, mission and the safety of the public they would look like the following: either divorced or never married, score high on the MMPI in Social Introversion, score low on MMPI with an "excessive" amount of MMPI critical items; and finally scores high on the NEO Openness and subscales Ideas, Feelings, and Actions.^ Based on the results gleaned from the analysis in this study there seems to be several factors, within psychometric testing, that when taken together, will aid the evaluators in selecting only the highest quality operators in order to save resources and to help protect the public from unfortunate critical incidents which may adversely affect our health and safety.^
(Table 8) Compositions of pyrites and pyrrhotite from sulfide ores of the Rainbow hydrothermal field
Resumo:
Visual observations of manganese deposits on the Blake plateau from a manned submersible indicate that the occurrence of manganese as nodules, slabs, or pavement may be related to localized environmental conditions. Manganese is concentrated at the crests of sand waves and, in areas of gentle slope, grades locally from nodules to solid pavement.