937 resultados para low energy Fe ion beams
Resumo:
The structure of a Pt(111) electrode after treatment in an electrolyte and subsequent transfer to an UHV chamber was investigated ex situ by combined low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), and Auger electron spectroscopy (AES). Treatment of the sample in a CO saturated 0.1 M HClO solution at potentials between -0.2 and 0.2 V versus Ag/AgCl caused a maximum CO coverage of about 0.75 as probed by cyclic voltammetry, which dropped by partial desorption to about 0.25 upon transfer to the UHV chamber. This adlayer exhibited a (distorted) 33 R30 pattern by RHEED (but not with LEED) exhibiting an average domain size of 2.3 nm at room temperature. This is identified with the same phase reported before from gas phase studies, as also corroborated by the similarities of the vibrational spectroscopic data. The same structure (albeit even more poorly ordered) was found after dissociative adsorption of methanol.
Resumo:
Ultrasonic consolidation process is a rapid manufacturing process used to join thin layers of metal at low temperatures and low energy consumption. In this work, finite element method has been used to simulate the ultrasonic consolidation of Aluminium alloys 6061 (AA-6061) and 3003 (AA-3003). A thermomechanical material model has been developed in the framework of continuum cyclic plasticity theory which takes into account both volume (acoustic softening) and surface (thermal softening due to friction) effects. A friction model based on experimental studies has been developed, which takes into account the dependence of coefficient of friction upon contact pressure, amount of slip, temperature and number of cycles. Using the developed material and friction model ultrasonic consolidation (UC) process has been simulated for various combinations of process parameters involved. Experimental observations are explained on the basis of the results obtained in the present study. The current research provides the opportunity to explain the differences of the behaviour of AA-6061 and AA-3003 during the ultrasonic consolidation process. Finally, trends of the experimentally measured fracture energies of the bonded specimen are compared to the predicted friction work at the weld interface resulted from the simulation at similar process condition. Similarity of the trends indicates the validity of the developed model in its predictive capability of the process. 2008 Materials Research Society.
Resumo:
In a recent article (J. Am. Chem. Soc. 2011, 133, 20186) we investigated the initial spatial distribution of dry excess electrons in a series of room-temperature ionic liquids (RTILs). Perhaps unexpectedly, we found that in some alkylammonium-based systems the excess negative charge resided on anions and not on the positive cations. Following on these results, in the current paper we describe the time evolution of an excess electronic charge introduced in alkylammonium- and pyrrolidinium-based ionic liquids coupled with the bis(trifluoromethylsulfonyl)amide ([TfN]) anion. We find that on a 50 fs time scale an initially delocalized excess electron localizes on a single [TfN] anion which begins a fragmentation process. Low-energy transitions have a very different physical origin on the several femtoseconds time scale when compared to what occurs on the picosecond time scale. At time zero, these are intraband transitions of the excess electron. However after 40 fs when the excess electronic charge localizes on a single anion, these transitions disappear, and the spectrum is dominated by electron-transfer transitions between the fragments of the doubly charged breaking anion. 2013 American Chemical Society.
Resumo:
In wetland-adapted plants, such as rice, it is typically root apexes, sites of rapid entry for water/nutrients, where radial oxygen losses (ROLs) are highest. Nutrient/toxic metal uptake therefore largely occurs through oxidized zones and pH microgradients. However, the processes controlling the acquisition of trace elements in rice have been difficult to explore experimentally because of a lack of techniques for simultaneously measuring labile trace elements and O2/pH. Here, we use new diffusive gradients in thin films (DGT)/planar optode sandwich sensors deployed in situ on rice roots to demonstrate a new geochemical niche of greatly enhanced As, Pb, and Fe(II) mobilization into solution immediately adjacent to the root tips characterized by O2 enrichment and low pH. Fe(II) mobilization was congruent to that of the peripheral edge of the aerobic root zone, demonstrating that the Fe(II) mobilization maximum only developed in a narrow O2 range as the oxidation front penetrates the reducing soil. The Fe flux to the DGT resin at the root apexes was 3-fold higher than the anaerobic bulk soil and 27 times greater than the aerobic rooting zone. These results provide new evidence for the importance of coupled diffusion and oxidation of Fe in modulating trace metal solubilization, dispersion, and plant uptake.<br/>
Resumo:
Energy consumption and total cost of ownership are daunting challenges for Datacenters, because they scale disproportionately with performance. Datacenters running financial analytics may incur extremely high operational costs in order to meet performance and latency requirements of their hosted applications. Recently, ARM-based microservers have emerged as a viable alternative to high-end servers, promising scalable performance via scale-out approaches and low energy consumption. In this paper, we investigate the viability of ARM-based microservers for option pricing, using the Monte Carlo and Binomial Tree kernels. We compare an ARM-based microserver against a state-of-the-art x86 server. We define application-related but platform-independent energy and performance metrics to compare those platforms fairly in the context of datacenters for financial analytics and give insight on the particular requirements of option pricing. Our experiments show that through scaling out energyefficient compute nodes within a 2U rack-mounted unit, an ARM-based microserver consumes as little as about 60% of the energy per option pricing compared to an x86 server, despite having significantly slower cores. We also find that the ARM microserver scales enough to meet a high fraction of market throughput demand, while consuming up to 30% less energy than an Intel server
Resumo:
Objective<br/>Based on the theory of incentive sensitization, the aim of this study was to investigate differences in attentional processing of food-related visual cues between normal-weight and overweight/obese males and females.<br/><br/>Methods<br/>Twenty-six normal-weight (14M, 12F) and 26 overweight/obese (14M, 12F) adults completed a visual probe task and an eye-tracking paradigm. Reaction times and eye movements to food and control images were collected during both a fasted and fed condition in a counterbalanced design.<br/><br/>Results<br/>Participants had greater visual attention towards high-energy-density food images compared to low-energy-density food images regardless of hunger condition. This was most pronounced in overweight/obese males who had significantly greater maintained attention towards high-energy-density food images when compared with their normal-weight counterparts however no between weight group differences were observed for female participants.<br/><br/>Conclusions<br/>High-energy-density food images appear to capture visual attention more readily than low-energy-density food images. Results also suggest the possibility of an altered visual food cue-associated reward system in overweight/obese males. Attentional processing of food cues may play a role in eating behaviors thus should be taken into consideration as part of an integrated approach to curbing obesity.
Resumo:
The solubility of carbon dioxide in five tetraalkylphosphonium superbase ionic liquids, namely the trihexyltetradecylphoshonium phenoxide, trihexyltetradecylphoshonium benzotriazolide, trihexyltetradecylphoshonium benzimidazolide, trihexyltetradecylphoshonium 1,2,3-triazolide, and trihexyltetradecylphoshonium 1,2,4-triazolide was studied experimentally under dry and wet conditions at 22 A degrees C and at atmospheric pressure, using a gravimetric saturation technique. The effects of anion structure and of the presence or absence of water in the solution on the carbon dioxide solubility were then deduced from the data. H-1 and C-13-NMR spectroscopy and ab initio calculations were also conducted to probe the interactions in these solutions, as carbon dioxide and water can compete in the ionic liquid structure during the absorption process. Additionally, the viscosity of selected superbase ionic liquids was measured under dry and wet conditions, in the presence or absence of CO2, to evaluate their practical application in carbon dioxide capture processes. Finally, the recyclability of the trihexyltetradecylphoshonium 1,2,4-triazolide under dry and wet conditions was determined to probe the ability of selected solvents to solubilize chemically a high concentration of carbon dioxide and then release it in a low energy demand process.