944 resultados para locality
Resumo:
A collection of layered ferromanganese ores (27 samples) from the Atlantic and Pacific oceans was studied. Trace element and PGE contents were determined layer-by-layer (up to 10 microlayers) in 13 of these samples. The trace, rare earth, and platinum group element distributions, including their layer-to-layer variations, were compared in hydrogenic and hydrothermal crusts from different regions. It was found that the main PGE variations (by a factor of 10-50) are related to their layer-to-layer variations within a given ore field. The distributions of PGE and trace elements are strongly heterogeneous, which is related, first, to different contents of the elements in the layers of different age in ferromanganese crusts (FMC) and, second, to the observed regional heterogeneity and influence of hydrothermal fluids. Geochemical data indicate that CFC formation was mainly caused by the hydrochemical precipitation of material from seawater. This process was accompanied by diagenetic phenomena, water-rock interaction, and influence of volcanic and hydrothermal sources.
Resumo:
This paper presents data on concentrations and composition of organic substances, lipids, and hydrocarbons, in the snow-ice cover of fast ices and continental lakes of Antarctic. It was shown that organic compounds were accumulated in layers with the most intense autochthonous processes (mainly at the snow-ice and ice-water boundaries). These zones remain active at a biogeochemical medium even at low temperatures. The maximum content of organic compounds (10-20 times that of the snow-ice cover of other regions) and a sharp change in the proportions of their migration forms in the ice volume were detected in the regions of penguin colonies (fast ice in the Buromsky Island and a lake in the Haswell Island). Contents and composition of hydrocarbons in Antarctic ices were compared with those of Arctic ices.
Resumo:
The paper presents data on the Nd-Sr systematics of magmatic rocks of the Khaidaiskii Series of the Anginskaya Formation in the Ol'khon region, western Baikal area, and rocks of the Talanchanskaya Formation on the eastern shore of Lake Baikal. Geochemical characteristics of these rocks are identical and testify to their arc provenance. At the same time, the epsilon(t)Nd of rocks of the Khaidaiskii Series in the Ol'khon area has positive values, and the data points of these rocks plot near the mantle succession line in the epsilon(t)Nd-87Sr/86Sr diagram, whereas the epsilon(t)Nd values of rocks of the Talanchanskaya Formation are negative, and the data points of these rocks fall into the fourth quadrant in the epsilon(t)Nd -87Sr/86Sr diagram. This testifies to a mantle genesis of the parental magmas of the Khaidaiskii Series and to the significant involvement of older crustal material in the generation of the melts that produced the orthorocks on the eastern shore of the lake. These conclusions are corroborated by model ages of magmatic rocks in the Ol'khon area (close to 1 Ga) and of rocks of the Talanchanskaya Formation (approximately 2 Ga). The comparison of our data with those obtained by other researchers on the Nd-Sr isotopic age of granulites of the Ol'khon Group and metavolcanics in various structural zones in the northern Baikal area suggests, with regard for the geochemistry of these rocks, the accretion of tectonic nappes that had different isotopic histories: some of them were derived from the mantle wedge and localized in the island arc itself (magmatic rocks of the Anginskaya Formation) or backarc spreading zone (mafic metamagmatic rocks of the Ol'khon Group), while others were partial melts derived, with the participation of crustal material, from sources of various age (metagraywackes in the backarc basin in the Ol'khon Group and the ensialic basement of the island arc in the Talanchanskaya Formation).
Resumo:
Innerdalen was once a mountain valley (ca. 780 m a.s.l.) with birch forests, bogs and several summer farms. Today it is a 6.5 km**2 artifical lake. In 1980 and 1981 archaeological and palynological investigations were carried out due to the hydroelectric power plans. Radiocarbon dated pollen diagrams from 9 different localities in Innerdalen provide information on a mountain environment which has been exploited to varying degrees by human groups for thousands of years. In the Birch Zone, ca. 9500-8500 years B.P., the deglaciated surface is vegetated by the normal sequence of pioneering species, first show-bed communities, then shrub/dwarf-shrub communities, and finally a birch forest community. In the Pine Zone, ca. 8500-7500 years B.P., the mixed Birch-Pine forest which prevailed at the end of the Birch Zone is replaced by a dense pine forest. The tree limit was higher than it is today. In the Alder Zone, ca. 7500-4000 years B.P., the newly arrived alder gradually succeeded pine, particularily on good soils. This alder forest has a modem analog in the pre-alpine gray alder forests in Norway. In the last part of the Alder Zone, ca. 6000-4000 years B.P., elm and hazel are nominally present on particularily rich soils, marking the edaphic and climatic optimum in Innerdalen. During this time the first evidence of human impact on the vegetation is apparent in the pollen diagrams. At both Sætersetra in the south of the valley and Liabekken in the north, forest clearance and the development of grazed grass meadows is documented, and human impact continues until the present. The Herb Zone, ca. 4000 years B.P. to 1600 A.D., is characterized by the rapid decline of alder. The forest is increasingly open, and bog formation is initiated. The sub-alpine belt of birch forest is established, probably due to the shift to a cooler, moister climate. Human activity can also have influenced the vegetational changes, although at 4 of the localities human activity also is first apparent after the alder decline. Some localities show measurably less human impact on the vegetation ca. 2600-2000 years B.P. Grazing intensity increases ca. 2000 years B.P. At the end of the Herb Zone rye and barley pollen is registered at Sætersetra and Flonan, indicating contact between the grazing activities of Innerdal and grain cultivation activities outside the valley. The Spruce Zone, ca. 1600 A.D. to the present, does not begin synchronously since the presence of long-distance transported spruce pollen at a locality is entirely dependent on the density of the vegetation ie. degree of human impact. The youngest spruce rise is ca. 1500 A.D. at Røstvangen, when summerfarming is initiated. Summerfarming activities in Innerdal produce an increasingly open landscape. Rye and barley pollen at several localities may indicate limited local cultivation, but is more likely long-distance transport via humans and domesticated animals from cultivated areas outside Innerdalen.
Resumo:
For the first time deep-sea mooring stations with sediment traps were deployed in the northeast Black Sea. One sediment trap for long-term studies was located at Station 1 (44°15'N, 37°43'E, deployment depth 1800 m, depth 1900 m). The trap collected sinking sedimentary material from January to May 1998. Material collectors were changed every 15 days. Other stations with sediment traps for short-term studies (September-October 1999) were located on the shelf: Station 2 (44°16'N, 38°37'E, deployment depth 45 m, depth 50 m) and on the bottom of the canyon: Station 3 (44°16'N, 38°22'E, deployment depth 1145 m, depth 1150 m), Station 4 (44°11'N, 38°21'E, deployment depths 200, 1550, 1650 m, depth 1670 m). Collected material indicates that vertical particle fluxes are controlled by seasonal changes of in situ production and by dynamics of terrigenous matter input. Higher vertical particle flux of carbonate and biogenic silica was in spring due to bloom of plankton organisms. Maximum of coccolith bloom is in April-May. Bloom of diatoms begins in March. In winter and autumn lithogenic material dominates in total flux. Its amount strongly depends on storms and river run-off. Suspended particle material differs from surface shelf sediments by finer particles (mainly clay fraction) and high content of clay minerals and biogenic silica. This material may form lateral fluxes with higher concentration of particles transported along the bottom of deep-sea canyons from the shelf to the deep basin within the nepheloid layer. In winter such transportation of sedimentary material is more intensive due to active vertical circulation of water masses.
Resumo:
Eine Reihe von Untersuchungen, die zum größten Teil in den Jahren 1941-44 durchgeführt worden sind, brachten neue Aufschlüsse über das Klima der freien Atmosphäre über dem Riesenraum Sibirien und dem angrenzenden Sektor des Polargebietes. Die Quelle dieser Untersuchungen bilden die aerologischen Stationen der UdSSR, an denen Höhenwindmessungen bereits seit etwa 1924 angestellt werden. Messungen der vertikalen Temperaturverteilung liegen erst seit etwa 1932, nach Einführung der Radiosonden vor. Aus beiden Angaben läßt sich das gesamte Feld des Luftdrucks und der Winde rechnerisch und kartographisch festlegen. Das Beobachtungsmaterial ist außerhalb Rußlands nur zum kleinen Teil zugänglich; außer den im einzelnen veröffentlichten Höhenwindmessungen der zwanziger Jahre handeIt es sich in erster Linie um die regelmäßig durch Funk verbreiteten Ergebnisse der Flugzeug- und Radiosondenaufstiege der Jahre 1936-1941. Wenn dieses Material auch nur einen Ausschnitt aus dem gesamten darstellt und zeitlich leider sehr wenig homogen ist, so genügt es doch zur Gewinnung eines ersten Überblickes über die Aerologie Sibiriens, wobei freilich die Zahlenwerte bei einer endgültigen Bearbeitung einer einheitlichen Zeitperiode noch manche Änderung erfahren werden. Damit kann in erster Näherung die Verteilung der wichtigsten meteorologischen Elemente über dem ganzen Gebiet bis zu einer Höhe von 10-12 km abgeleitet werden.