998 resultados para light interception
Resumo:
The efficiencies of red organic light-emitting diode (OLED) using tris-(8-hydroxy-quinoline)aluminum (Alq(3)) as host and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant were greatly increased by adding a small amount (0.3 wt%) of Ir compound, iridium(III) bis(3-(2-benzothiazolyl)-7-(diethylamino)-2H-1-benzopyran-2-onato-N-',C-4) (acetyl acetonate) (Ir(C6)(2)(acac)), as a sensitizer
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations. The highest occupied molecular orbital levels of these complexes are raised by the integration of a carbazole unit to the iridium isoquinoline core so that the hole-transporting ability is improved in the resulting complexes relative to those with I-phenylisoquinoline ligands. All of the complexes are highly thermally stable and emit an intense red light at room temperature with relatively short lifetimes that are beneficial for highly efficient organic light-emitting diodes (OLEDs).
Resumo:
A series of cross-linkable aromatic amines has been synthesized by the multi-step synthetic rout. Full characterization of their structure by H-1 NMR-, IR- and mass spectrometry is presented. The synthesized materials were examined by various techniques including differential scanning calorimetry, thermogravimetry, UV and electron photoemission spectrometry.
Resumo:
Characteristics of white organic light-emitting devices based on phosphor sensitized fluorescence are improved by using a multiple-emissive-layer structure, in which a phosphorescent blue emissive layer is sandwiched between red and green&yellow ones. In this device, bis[(4,6-difluorophenyl)-pyridinato-N,C-2] (picolinato), bis(2,4-diphenyl-quinoline) iridium (III) acetylanetonate, fac bis (2-phenylpyridine) iridium, and 5,6,11,12-tetraphenylnaphthacene are used as blue, red, green, and yellow emitters, respectively.
Resumo:
An amorphous photoluminescent material based on a dithienylbenzothiadiazole structure has been used for the fabrication of organic red-light-emitting diodes. The synergistic effects of the electron-transport ability and exciton confinement of the emitting material allow for the fabrication of efficient pure-red-light-emitting devices without a hole blocker.
Resumo:
The biocatalytic growth of gold nanoparticles (Au-NPs) has been employed in the design of new optical biosensors based on the enhanced resonance light scattering (RLS) signals. Both absorption spectroscopy and transmission electron microscopy (TEM) analysis revealed Au-NP seeds could be effectively enlarged upon the reaction with H2O2, an important metabolite that could be generated by many biocatalytic reactions.
Resumo:
A NADH and glucose biosensor based on thionine cross-linked multiwalled carbon nanotubes (MWNTs) and Au nanoparticles (Au NPs) multilayer functionalized indium-doped tin oxide (ITO) electrode were presented in this paper. The effect of light irradiation on the enhancement of bioelectrocatalytic processes of the biocatalytic systems by the photovoltaic effect was investigated.
Resumo:
A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer.
Resumo:
Much attention has been paid to carbazole derivatives for their potential applications as optical materials. For the first time, the blue-light-emitting carbazole chromophore has been covalently bonded to the ordered mesoporous SBA-15 (The resultant hybrid mesoporous materials are denoted as carbazole-SBA-15) by co-condensation of tetraethoxysilane (TEOS) and prepared compound 3-[N-3-(triethoxyilyl)propyl]ureyl-9-ethyl-carbazole (denoted as carbazole-Si) in the presence of Pluronic P123 surfactant. The results of H-1 NMR and Fourier transform infrared (FTIR) reveal that carbazole-Si has been successfully synthesized.
Resumo:
Crystallization kinetics of syndiotactic polypropylene ( sPP) was observed by light attenuation measurements. The initial stages of temperature dependent sPP crystallization fall in the range of Rayleigh scattering and Rayleigh-Debye-Gans scattering. Initial time and growth time of crystallization were obtained, and the trend of crystallization temperature dependent linear attenuation coefficient on the radius and the index of the refraction of the spherulite were evaluated.
Resumo:
A series of novel red-emitting iridium dendrimers functionalized with oligocarbazole host dendrons up to the third generation (red-G3) have been synthesized by a convergent method, and their photophysical, electrochemical, and electroluminescent properties have been investigated. In addition to controlling the intermolecular interactions, oligocarbazole-based dendrons could also participate in the electrochemical and charge-transporting process. As a result, highly efficient electrophosphorescent devices can be fabricated by spin-coating from chlorobenzene solution in different device configurations.
Resumo:
We developed a series of highly efficient blue electroluminescent polymers with dopant-host systems and molecular dispersion features by selecting 1,8-naphthalimide derivatives as the light blue emissive dopant units, choosing polyfluorene as the deep blue emissive polymer host and covalently attaching the dopant units to the side chain of the polymer host. The polymers' EL spectra exhibited both deep blue emission from the polymer host and light blue emission from the dopant units because of the energy transfer and charge trapping from the polymer host to the dopant units.
Resumo:
This paper reports a new patterning method, the complementary-structure micropatterning (CSMP) technique, to fabricate the undercut structures for the passive-matrix display of organic light-emitting diodes (OLEDs). First, the polyvinylpyrrolidone (PVP) stripe patterns with a trapeziform cross-section were formed by micromolding in capillaries. Then the photoresist was spin coated on the substrate with the patterned PVP stripes and developed in water.
Resumo:
It has been experimentally found that molybdenum oxide (MoO3) as the interfacial modification layer on indium-tin-oxide (ITO) in organic light-emitting diodes (OLEDs) significantly improves the efficiency and lifetime. In this paper, the role of MoO3 and MoO3 doped N,N '-di(naphthalene-1-yl)-N,N '-diphenyl-benzidine (NPB) as the interface modification layer on ITO in improvement of the efficiency and stability of OLEDs is investigated in detail by atomic force microscopy (AFM), polarized optical microscopy, transmission spectra, ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).
Resumo:
A soluble nonionic surfactant, polyethylenimine 80% ethoxylated (PEIE) solution, was used as the electron injection material in inverted bottom-emission organic light emitting diodes (OLEDs). The transparent PEIE film was formed on indium-tin-oxide cathode by simple spin-coating method and it was found that the electron injection was greatly enhanced. The devices with PEIE electron injection layer had achieved significant enhancement in luminance and efficiency. The maximum luminance reached 47 000 cd/m(2), and the maximum luminance efficiency and power efficiency arrived at 19.7 cd/A and 10.6 lm/W, respectively.