938 resultados para lean body weight


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To conduct a systematic review of risk factors associated with the development of Endometrial Hyperplasia (EH).

Data sources: Ovid MEDLINE, EMBASE and Web of Science databases were searched from inception to 30 June 2015.

Study eligibility: Fifteen observational studies that reported on EH risk in relation to lifestyle factors (n=14), medical history (n=11), reproductive and menstrual history (n=9) and measures of socio-economic status (n=2) were identified. Pooled relative risk estimates and corresponding 95% confidence intervals (CI) were able to be derived for EH and Body Mass Index (BMI), smoking, diabetes and hypertension, using random effects models comparing high versus low categories.

Results: The pooled relative risk for EH when comparing women with the highest versus lowest BMI was 1.82 (95% CI 1.22–2.71; n=7 studies, I2=90.4%). No significant associations were observed for EH risk for smokers compared with non-smokers (RR 0.88, 95% CI 0.66-1.17; n=3, I2=0.0%), hypertensive versus normotensive women (RR 1.51, 95% CI 0.72–3.15; n=5 studies, I2=79.1%), or diabetic versus non-diabetic women (RR 1.77, 95% CI 0.79–3.96; n=5 studies, I2=31.8%) respectively although the number of included studies was limited. There were mixed reports on the relationship between age and risk of EH. Too few studies reported on other factors to reach any conclusions in relation to EH risk.

Conclusions: A high BMI was associated with an increased risk of EH, providing additional rationale for women to maintain a normal body weight. No significant associations were detected for other factors and EH risk, however relatively few studies have been conducted and few of the available studies adequately adjusted for relevant confounders. Therefore, further aetiological studies of endometrial hyperplasia are warranted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cachexia is a complex syndrome characterized by severe weight loss frequently observed in cancer patients and associated with poor prognosis. Cancer cachexia is also related to modifications in cardiac muscle structure and metabolism leading to cardiac dysfunction. In order to better understand the cardiac remodeling induced by bladder cancer and the impact of exercise training after diagnosis on its regulation, we used an animal model of bladder cancer induced by exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in the drinking water. Healthy animals and previously BBN exposed animals were submitted to a training program in a treadmill at a speed of 20m/min, 60 min/day, 5 days/week during 13 weeks. At the end of the protocol, animals exposed to BBN presented a significant decrease of body weight, in comparison with control groups, supporting the presence of cancer cachexia. Morphological analysis of the cardiac muscle sections revealed the presence of fibrosis and a significant decrease of cardiomyocyte’s cross-sectional area, suggesting the occurrence of cardiac dysfunction associated with bladder cancer. These modifications were accompanied by heart metabolic remodeling characterized by a decreased fatty acid oxidation given by diminished levels of ETFDH and of complex II subunit  from the respiratory chain. Exercise training promoted an increment of connexin 43, a protein involved in cardioprotection, and of c-kit, a protein present in cardiac stem cells. These results suggest an improved heart regenerative capacity induced by exercise training. In conclusion, endurance training seems an attractive non-pharmacological therapeutic option for the management of cardiac dysfunction in cancer cachexia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hymenochirin-1b (Hym-1B; IKLSPETKDNLKKVLKGAIKGAIAVAKMV.NH2) is a cationic, α-helical amphibian host-defense peptide with antimicrobial, anticancer, and immunomodulatory properties. This study investigates the abilities of the peptide and nine analogues containing substitutions of Pro5, Glu6, and Asp9 by either l-lysine or d-lysine to stimulate insulin release in vitro using BRIN-BD11 clonal β cells or isolated mouse islets and in vivo using mice fed a high-fat diet to produce obesity and insulin resistance. Hym-1B produced a significant and concentration-dependent increase in the rate of insulin release from BRIN-BD11 cells without cytotoxicity at concentrations up to 1 µM with a threshold concentration of 1 nM. The threshold concentrations for the analogues were: [P5K], [E6K], [D9K], [P5K, E6K] and [E6K, D9k] 0.003 nM, [E6K, D9K] and [D9k] 0.01 nM, [P5K, D9K] 0.1 nM and [E6k] 0.3 nM. All peptides displayed cytotoxicity at concentrations ≥1 µM except the [P5K] and [D9k] analogues which were non-toxic at 3 µM. The potency and maximum rate of insulin release from mouse islets produced by the [P5K] peptide were significantly greater than produced by Hym-1B. Neither Hym-1B nor the [P5K] analogue at 1 µM concentration had an effect on membrane depolarization or intracellular Ca2+. The [P5K] analogue (1 µM) produced a significant increase in cAMP concentration in BRIN-BD11 cells and stimulated GLP-1 secretion from GLUTag cells. Down-regulation of the protein kinase A pathway by overnight incubation with forskolin completely abolished the insulin-releasing effects of [P5K]hym-1B. Intraperitoneal administration of the [P5K] and [D9k] analogues (75 nmol/kg body weight) to high-fat-fed mice with insulin resistance significantly enhanced glucose tolerance with a concomitant increase in insulin secretion. We conclude that [P5K]hym-1B and [D9k]hym-1B show potential for development into anti-diabetic agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the European Union the turn towards renewable energy sources has increased the production of biodiesel from rapeseed oil, leaving glycerol (also known as glycerin) as a valuable by-product. For every litre of biodiesel produced, approximately 79 g of crude glycerol are generated. As the biodiesel production grows, the quantity of crude glycerol generated will be considerable and its utilization will become an urgent topic. One possibility is the use of crude glycerol on animal feeds. Glycerol has been evaluated as a dietary energy source for several farm animals, including fish. A study was undertaken to assess the effect of dietary biodiesel-derived glycerol (from rapeseed oil) on the overall growth performance, digestive capacity and metabolic nutrient utilization in juvenile gilthead seabream fed a low fishmeal level diet. Two practical diets were formulated to be isonitrogenous (crude protein, 45.4% DM), isolipidic (18.5% DM) and isoenergetic (gross energy, 21.3 kJ/g DM). The control diet (CTRL) was formulated with intermediate levels of marine-derived proteins (19%). In the same basal formulation, 5% glycerol (GLY) was incorporated at the expenses of wheat. Each dietary treatment was tested in triplicate tanks over 63 days, with 20 gilthead seabream (Sparus aurata), with a mean initial body weight (IBW) of 27.9  0.12 g. At the end of the trial, fish fed the CTRL diet reached a final body weight of 84.3  2.2 g (more than 3-fold increase of initial body weight). Fish fed the GLY diet showed a significantly higher (P<0.05) growth, expressed in terms of final body weight and specific growth rate. Voluntary feed intake was similar between the two treatments, but both feed efficiency and protein efficiency ratio were significantly improved (P<0.05) in fish fed the GLY diet. Dietary glycerol had no effect (P>0.05) on the apparent digestibility of protein. In comparison to the control treatment, dietary glycerol significantly improved (P<0.05) protein and fat retention. Activities of digestive enzymes were significantly affected by the various dietary treatments. Fish fed the GLY diet showed an enhanced activity of alkaline phosphatase (ALP) and pepsin, while activities of lipase and leucine-alanine peptidase (LAP) were little affected by dietary glycerol. Fish show the ability to use crude glycerol as a dietary energy substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This brochure written in Spanish gives ideas to help improve children's eating, growth and weight gain. Included is a milk shake recipe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de doutoramento, Enfermagem, Universidade de Lisboa, com a participação da Escola Superior de Enfermagem, 2014

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alcohol binge drinking, especially in teenagers and young adults is a major public health issue in the UK, with the number of alcohol related liver disorders steadily increasing. Understanding the mechanisms behind liver disease arising from binge-drinking and finding ways to prevent such damage are currently important areas of research. In the present investigation the effect of acute ethanol administration on hepatic oxidative damage and apoptosis was examined using both an in vivo and in vitro approach; the effect of micronutrient supplementation prior and during ethanol exposure was also studied. The following studies were performed: (1) ethanol administration (75 mmol/kg body weight) and cyanamide pre-treatment followed by ethanol to study elevated acetaldehyde levels with liver tissue analysed 2.5, 6 and 24 hours post-alcohol; (2). Using juvenile animals, 2% betaine supplementation followed by acute ethanol with tissue analysed 24 hrs post ethanol; and (3). Micronutrient supplementation during concomitant ethanol exposure to hepG2 cells. It was found that a single dose of alcohol caused oxidative damage to the liver of rats at 2.5 hr post-alcohol as evidenced by decreased glutathione levels and increased malondialdehyde levels in both the cytosol and mitochondria. Liver function was also depressed but there were no findings of apoptosis as cytochrome c levels and caspase 3 activity was unchanged. At 6 hours, the effect of ethanol was reduced suggesting some degree of recovery, however, by 24 hours, increased mitochondrial oxidative stress was apparent. The effect of elevated acetaldehyde on hepatic damage was particularly evident at 24 hours, with some oxidative changes at earlier time points. At 24 hours, acetaldehyde caused a profound drop in glutathione levels in the cytosol and hepatic function was still deteriorating. Studies examining ethanol exposure to juvenile livers showed that glutathione levels were increased, suggesting an overtly protective response not seen in with older animals. It also showed that despite cytochrome c release into the cytosol, caspase-3 levels were not increased. This suggests that ATP depletion is preventing apoptosis initiation. Betaine supplementation prevented almost all of the alcohol-mediated changes, suggesting that the main mechanism behind alcohol-mediated liver damage is oxidative stress. Results using the hepG2 cell line model showed that micronutrients involved in glutathione synthesis can protect against hepatocyte damage caused by alcohol metabolism, with reduced reactive oxygen species and increased/maintained glutathione levels. In summary, these results demonstrate that both acute alcohol and acetaldehyde can have damaging effects to the liver, but that dietary intervention may be able to protect against ethanol induced oxidative stress.