971 resultados para lateral shoot


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical mammalian transient receptor potential channels form non-selective cation channels that open in response to activation of phospholipase C-coupled metabotropic receptors, and are thought to play a key role in calcium homeostasis in non-excitable cells. Within the nervous system transient receptor potential channels are widely distributed but their physiological roles are not well understood. Here we show that in the rat lateral amygdala transient receptor potential channels mediate an excitatory synaptic response to glutamate. Activation of group l etabotropic glutamate receptors on pyramidal neurons in the lateral amygdala with either exogenous or synaptically released glutamate evokes an inward current at negative potentials with a current voltage relationship showing a region of negative slope and steep outward rectification. This current is blocked by inhibiting G protein function with GTP-beta-S, by inhibiting phospholipase C or by infusing transient receptor potential antibodies into lateral amygdala pyramidal neurons. Using RT-PCR and Western blotting we show that transient receptor potential 1, transient receptor potential 4 and transient receptor potential 5 are present in the lateral amygdala. Single cell PCR confirms the presence of transient receptor potential 1 and transient receptor potential 5 in pyramidal neurons and we show by co-immunoprecipitation that transient receptor potential 1 and transient receptor potential 5 co-assemble as a heteromultimers in the amygdala. These results show that in lateral amygdala pyramidal neurons synaptically released glutamate activates transient receptor potential channels, which we propose are likely to be heteromultimeric channels containing transient receptor potential 1 and transient receptor potential 5/transient receptor potential 4. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Legume plants carefully control the extent of nodulation in response to rhizobial infection. To examine the mechanism underlying this process we conducted a detailed analysis of the Lotus japonicus hypernodulating mutants, har1-1, 2 and 3 that define a new locus, HYPERNODULATION ABERRANT ROOT FORMATION (Har1), involved in root and symbiotic development. Mutations in the Har1 locus alter root architecture by inhibiting root elongation, diminishing root diameter and stimulating lateral root initiation. At the cellular level these developmental alterations are associated with changes in the position and duration of root cell growth and result in a premature differentiation of har1-1 mutant root. No significant differences between har1-1 mutant and wild-type plants were detected with respect to root growth responses to 1-aminocyclopropane1-carboxylic acid, the immediate precursor of ethylene, and auxin; however, cytokinin in the presence of AVG (aminoetoxyvinylglycine) was found to stimulate root elongation of the har1-1 mutant but not the wild-type. After inoculation with Mesorhizobium loti, the har1 mutant lines display an unusual hypernodulation (HNR) response, characterized by unrestricted nodulation (hypernodulation), and a concomitant drastic inhibition of root and shoot growth. These observations implicate a role for the Har1 locus in both symbiotic and non-symbiotic development of L. japonicus, and suggest that regulatory processes controlling nodule organogenesis and nodule number are integrated in an overall mechanism governing root growth and development.