998 resultados para interaction kissing-loop
A qualitative host-pathogen interaction in the Theobroma cacao-Moniliophthora perniciosa pathosystem
Resumo:
The aim of this study was to test whether resistance of clones of Theobroma cacao ( cocoa) varied between isolates of Moniliophthora (formerly Crinipellis) perniciosa, the cause of witches' broom disease. Developing buds of vegetatively propagated T. cacao grown in greenhouses in the UK were inoculated with 16 000 spores of M. perniciosa per meristem in water, under conditions where water condensed on the inoculated shoot for at least 12 h after inoculation. The proportion of successful inoculations varied between clones and was inversely correlated with time to symptom production or broom formation. A specific interaction was demonstrated among three single-spore isolates of M. perniciosa and the clone Scavina 6 (SCA 6) and a variety of susceptible clones. Isolates Castenhal-I and APC3 were equally likely to infect SCA 6 and the other clones, but isolate Gran Couva A9 never infected SCA 6, although it was as virulent on the other clones. The interaction was maintained when the wetness period was extended to 70 h. Offspring of SCA 6 x Amelonado matings were all susceptible to both Castenhal-I and GC-A5, with no evidence of greater variability in susceptibility to GC-A5 than Castanhal-I. This suggests recessive inheritance of a single homozygous factor conferring resistance to GC-A5, from SCA 6. The progenies were slightly more susceptible to Castanhal-I than GC-A5. The implications for managing the disease are discussed.
Resumo:
Unlike other positive-stranded RNA viruses that use either a 5'-cap structure or an internal ribosome entry site to direct translation of their messenger RNA, calicivirus translation is dependent on the presence of a protein covalently linked to the 50 end of the viral genome (VPg). We have shown a direct interaction of the calicivirus VPg with the cap-binding protein eIF4E. This interaction is required for calicivirus mRNA translation, as sequestration of eIF4E by 4E-BP1 inhibits translation. Functional analysis has shown that VPg does not interfere with the interaction between eIF4E and the cap structure or 4E-BP1, suggesting that VPg binds to eIF4E at a different site from both cap and 4E-BP1. This work lends support to the idea that calicivirus VPg acts as a novel 'cap substitute' during initiation of translation on virus mRNA.
Resumo:
The DcuS-DcuR system of Escherichia coli is a two-component sensor-regulator that controls gene expression in response to external C-4-dicarboxylates and citrate. The DcuS protein is particularly interesting since it contains two PAS domains, namely a periplasmic C-4-dicarboxylate-sensing PAS domain (PASp) and a cytosolic PAS domain (PASc) of uncertain function. For a study of the role of the PASc domain, three different fragments of DcuS were overproduced and examined: they were PASc-kinase, PASc, and kinase. The two kinase-domain-containing fragments were autophosphorylated by [gamma-P-32]ATP. The rate was not affected by fumarate or succinate, supporting the role of the PASp domain in C-4-dicarboxylate sensing. Both of the phosphorylated DcuS constructs were able to rapidly pass their phosphoryl groups to DcuR, and after phosphorylation, DcuR dephosphorylated rapidly. No prosthetic group or significant quantity of metal was found associated with either of the PASc-containing proteins. The DNA-binding specificity of DcuR was studied by use of the pure protein. It was found to be converted from a monomer to a dimer upon acetylphosphate treatment, and native polyacrylamide gel electrophoresis suggested that it can oligomerize. DcuR specifically bound to the promoters of the three known DcuSR-regulated genes (dctA, dcuB, and frdA), with apparent K(D)s of 6 to 32 muM for untreated DcuR and less than or equal to1 to 2 muM for the acetylphosphate-treated form. The binding sites were located by DNase I footprinting, allowing a putative DcuR-binding motif [tandemly repeated (T/A)(A/T)(T/C)(A/T)AA sequences] to be identified. The DcuR-binding sites of the dcuB, dctA, and frdA genes were located 27, 94, and 86 bp, respectively, upstream of the corresponding +1 sites, and a new promoter was identified for dcuB that responds to DcuR.
Resumo:
We previously identified the function of the hepatitis C virus (HCV) p7 protein as an ion channel in artificial lipid bilayers and demonstrated that this in vitro activity is inhibited by amantadine. Here we show that the ion channel activity of HCV p7 expressed in mammalian cells can substitute for that of influenza virus M2 in a cell-based assay. This was also the case for the p7 from the related virus, bovine viral diarrhoea virus (BVDV). Moreover, amantadine was shown to abrogate HCV p7 function in this assay at a concentration that specifically inhibits M2. Mutation of a conserved basic loop located between the two predicted trans-membrane alpha helices rendered HCV p7 non-functional as an ion channel. The intracellular localization of p7 was unaffected by this mutation and was found to overlap significantly with membranes associated with mitochondria. Demonstration of p7 ion channel activity in cellular membranes and its inhibition by amantadine affirm the protein as a target for future anti-viral chemotherapy.
Resumo:
The poliovirus cis-acting replication element (CRE) templates the uridylylation of VPg, the protein primer for genome replication. The CRE is a highly conserved structural RNA element in the enteroviruses and located within the polyprotein-coding region of the genome. We have determined the native structure of the CRE, defined the regions of the structure critical for activity, and investigated the influence of genomic location on function. Our results demonstrate that a 14-nucleotide unpaired terminal loop, presented on a suitably stable stem, is all that is required for function. These conclusions complement the recent analysis of the 14-nucleotide terminal loop in the CRE of human rhinovirus type 14. The CRE can be translocated to the 5' noncoding region of the genome, at least 3.7-kb distant from the native location, without adversely influencing activity, and CRE duplications do not adversely influence replication. We do not have evidence for a specific interaction between the CRE and the RNA-binding 3CD(pro) complex, an essential component of the uridylylation reaction, and the mechanism by which the CRE is coordinated and orientated during the reaction remains unclear. These studies provide a detailed overview of the structural determinants required for CRE function, and will facilitate a better understanding of the requirements for picornavirus replication.
Resumo:
The human D-2short (D-2S) dopamine receptor has been expressed together with the G proteins Gi2 and Go in insect cells using the baculovirus system. Levels of receptor were determined using [H-3]spiperone binding. Levels of G protein heterotrimer were determined using quantitative Western blot and using [S-35]GTPgammaS saturation binding experiments. Levels of the receptor and G protein and the receptor/G protein ratio were similar in the two preparations. Stimulation of [S-35]GTPgammaS binding by a range of agonists occurred with higher relative efficacy and in some cases higher potency in the preparation expressing Go, indicating that interaction of the D-2S receptor is more efficient with this G protein. The effects of various G protein-selective agents on 10,11-dihydroxy-N-n-propylnorapomorphine ([H-3]NPA) binding were used to examine the receptor/G protein complex in the two preparations. Suramin inhibited [H-3]NPA binding with slightly higher potency in the Gi2 preparation, whereas GppNHp inhibited [H-3]NPA binding with greater potency (similar to6-fold) in the Go preparation. This may imply that the G protein is more readily activated in the D-2S/Go preparation. [H-3]Spiperone binding occurred with an increased B-max in the presence of suramin in the Go preparation but not in the Gi2 preparation, suggesting a higher affinity interaction between the free receptor and this G protein. It is concluded that the higher efficiency activation of Go by the D-2S receptor may be a function of higher affinity receptor/G protein interaction as well as a greater ability to activate the G protein. (C) 2003 Elsevier Science Inc. All rights reserved.
Amino terminal interaction in the prion protein identified using fusion to green fluorescent protein
Resumo:
In contrast to the well-characterized carboxyl domain, the amino terminal half of the mature cellular prion protein has no defined structure. Here, following fusion of mouse prion protein fragments to green fluorescence protein as a reporter of protein stability, we report extreme variability in fluorescence level that is dependent on the prion fragment expressed. In particular, exposure of the extreme amino terminus in the context of a truncated prion protein molecule led to rapid degradation, whereas the loss of only six amino terminal residues rescued high level fluorescence. Study of the precise endpoints and residue identity associated with high fluorescence suggested a domain within the amino terminal half of the molecule defined by a long-range intramolecular interaction between 23KKRPKP28 and 143DWED146 and dependent upon the anti-parallel beta-sheet ending at residue 169 and normally associated with the structurally defined carboxyl terminal domain. This previously unreported interaction may be significant for understanding prion bioactivity and for structural studies aimed at the complete prion structure.
Resumo:
Reaction of 2-(2'-hydroxyphenylazo)phenol with [Rh(PPh3)(3)Cl] in refluxing benzene in presence of triethylamine afforded a red complex in which the ligand is coordinated to rhodium as a tridentate O,N,O-donor. However, similar reaction of [Rh(PPh3)(3)Cl] with 2-(2'carboxyphenylazo)-4-methylphenol yielded two complexes, viz. a blue one and a green one. In both the complexes the ligand is coordinated as C,N,O-donor. However, in the blue complex orthometallation takes place from the ortho-carbon atom, which bears -COOH group via decarboxylation and in green one orthometallation occurs from the other ortho-carbon. Structures of all the three complexes were determined by X-ray crystallography. In all the three complexes rhodium is sharing the equatorial plane with the tridentate ligand and a chloride, and the two triphenylphosphines are axially disposed. All of the complexes show intense MLCT transitions in the visible region. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation on the positive side of SCE and a reduction of the coordinated azophenolate ligand on the negative side. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J=0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. (C) 2004 American Institute of Physics.
Resumo:
The X-ray crystal structure of [CuL2]ClO4 where L is the 1:1 condensate of benzil-monohydrazone and 2-pyridinecarboxalde-hyde, reveals unprecedented pi - pi interaction between the metallacycles and phenyl rings. The interaction is intramolecular. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
X-ray crystallography shows that [Ag2L2(H2O)(2)](BF4)(2) where L is a 1:1 condensate of 1,2-diphenylethane-1,2-dione and 2-(2-aminoethyl pyridine), contains an Ag(I)-Ag(I) bond of length 2.979(2) angstrom and an angular, intraligand interaction of the keto O with the pi cloud of the pyridine moiety (O-pyridine centroid = 3.12 angstrom). Model MP2/6-311++G(d,p) calculations indicate that the observed lone pair-pi type interaction is stabilising and not merely a tolerated short contact. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Three supramolecular complexes of Co(II) using SCN-/SeCN- in combination with 4,4'-dipyridyl-N,N'-dioxide (dpyo), i.e., {[Co(SCN)(2)(dpyo)(2)].(dpyo)}(n) ( 1), {[Co(SCN)(2)(dpyo)(H2O)(2)].(H2O)}(n) ( 2), {[Co(SeCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 3), have been synthesized and characterized by single-crystal X-ray analysis. Complex 1 is a rare example of a dpyo bridged two-dimensional (2D) coordination polymer, and pi-stacked dpyo supramolecular rods are generated by the lattice dpyo, passing through the rhombic grid of stacked layers, resulting in a three-dimensional (3D) superstructure. Complexes 2 and 3 are isomorphous one-dimensional (1D) coordination polymers [-Co-dpyo-Co-] that undergo self-assembly leading to a bilayer architecture derived through an R-2(2)(8) H-bonding synthon between coordinated water and dpyo oxygen. A reinvestigation of coordination polymers [Mn(SCN)(2)(dpyo)( H2O)(MeOH)](n) ( 4) and {[Fe(SCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 5) reported recently by our group [ Manna et al. Indian J. Chem. 2006, 45A, 1813] reveals brick wall topology rather than bilayer architecture is due to the decisive role of S center dot center dot center dot S/Se center dot center dot center dot Se interactions in determining the helical nature in 4 and 5 as compared to zigzag polymeric chains in 2 and 3, although the same R-2(2)(8) synthon is responsible for supramolecular assembly in these complexes.
Resumo:
The solid-phase synthesis of a cyclic peptide containing the 21-residue epitope found in the A-B loop of the Cepsilon3 domain of human immunoglobulin E has been carried out. The key macrocyclization step to form the 65-membered ring is achieved in similar to15% yield via an "on-resin" Sonogashira coupling reaction which concomitantly installs a diphenylacetylene amino acid conformational constraint within the loop.
Resumo:
Conventional supported metal catalysts are metal nanoparticles deposited on high surface area oxide supports with a poorly defined metal−support interface. Typically, the traditionally prepared Pt/ceria catalyzes both methanation (H2/CO to CH4) and water−gas shift (CO/H2O to CO2/H2) reactions. By using simple nanochemistry techniques, we show for the first time that Pt or PtAu metal can be created inside each CeO2 particle with tailored dimensions. The encapsulated metal is shown to interact with the thin CeO2 overlayer in each single particle in an optimum geometry to create a unique interface, giving high activity and excellent selectivity for the water−gas shift reaction, but is totally inert for methanation. Thus, this work clearly demonstrates the significance of nanoengineering of a single catalyst particle by a bottom-up construction approach in modern catalyst design which could enable exploitation of catalyst site differentiation, leading to new catalytic properties.
Resumo:
Oil rig mooring lines have traditionally consisted of chain and wire rope. As production has moved into deeper water it has proved advantageous to incorporate sections of fibre rope into the mooring lines. However, this has highlighted torsional interaction problems that can occur when ropes of different types are joined together. This paper describes a method by which the torsional properties of ropes can be modelled and can then be used to calculate the rotation and torque for two ropes connected in series. The method uses numerical representations of the torsional characteristics of both the ropes, and equates the torque generated in each rope under load to determine the rotation at the connection point. Data from rope torsional characterization tests have been analysed to derive constants used in the numerical model. Constants are presented for: a six-strand wire rope; a torque-balanced fibre rope; and a fibre rope that has been designed to be torque-matched to stranded wire rope. The calculation method has been verified by comparing predicted rotations with measured test values. Worked examples are given for a six-strand wire rope connected, firstly, to a torque-balanced fibre rope that offers little rotational restraint, and, secondly, to a fibre rope whose torsional properties are matched to that of the wire rope.