936 resultados para image processing, structural biology, acetylcholine, achbp, hemocyanin
Resumo:
We propose an architecture for a rule-based online management systems (RuleOMS). Typically, many domain areas face the problem that stakeholders maintain databases of their business core information and they have to take decisions or create reports according to guidelines, policies or regulations. To address this issue we propose the integration of databases, in particular relational databases, with a logic reasoner and rule engine. We argue that defeasible logic is an appropriate formalism to model rules, in particular when the rules are meant to model regulations. The resulting RuleOMS provides an efficient and flexible solution to the problem at hand using defeasible inference. A case study of an online child care management system is used to illustrate the proposed architecture.
Resumo:
Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.
Resumo:
3D registration of brain MRI data is vital for many medical imaging applications. However, purely intensitybased approaches for inter-subject matching of brain structure are generally inaccurate in cortical regions, due to the highly complex network of sulci and gyri, which vary widely across subjects. Here we combine a surfacebased cortical registration with a 3D fluid one for the first time, enabling precise matching of cortical folds, but allowing large deformations in the enclosed brain volume, which guarantee diffeomorphisms. This greatly improves the matching of anatomy in cortical areas. The cortices are segmented and registered with the software Freesurfer. The deformation field is initially extended to the full 3D brain volume using a 3D harmonic mapping that preserves the matching between cortical surfaces. Finally, these deformation fields are used to initialize a 3D Riemannian fluid registration algorithm, that improves the alignment of subcortical brain regions. We validate this method on an MRI dataset from 92 healthy adult twins. Results are compared to those based on volumetric registration without surface constraints; the resulting mean templates resolve consistent anatomical features both subcortically and at the cortex, suggesting that the approach is well-suited for cross-subject integration of functional and anatomic data.
Resumo:
There is a major effort in medical imaging to develop algorithms to extract information from DTI and HARDI, which provide detailed information on brain integrity and connectivity. As the images have recently advanced to provide extraordinarily high angular resolution and spatial detail, including an entire manifold of information at each point in the 3D images, there has been no readily available means to view the results. This impedes developments in HARDI research, which need some method to check the plausibility and validity of image processing operations on HARDI data or to appreciate data features or invariants that might serve as a basis for new directions in image segmentation, registration, and statistics. We present a set of tools to provide interactive display of HARDI data, including both a local rendering application and an off-screen renderer that works with a web-based viewer. Visualizations are presented after registration and averaging of HARDI data from 90 human subjects, revealing important details for which there would be no direct way to appreciate using conventional display of scalar images.
Resumo:
In this paper we present a robust method to detect handwritten text from unconstrained drawings on normal whiteboards. Unlike printed text on documents, free form handwritten text has no pattern in terms of size, orientation and font and it is often mixed with other drawings such as lines and shapes. Unlike handwritings on paper, handwritings on a normal whiteboard cannot be scanned so the detection has to be based on photos. Our work traces straight edges on photos of the whiteboard and builds graph representation of connected components. We use geometric properties such as edge density, graph density, aspect ratio and neighborhood similarity to differentiate handwritten text from other drawings. The experiment results show that our method achieves satisfactory precision and recall. Furthermore, the method is robust and efficient enough to be deployed in a mobile device. This is an important enabler of business applications that support whiteboard-centric visual meetings in enterprise scenarios. © 2012 IEEE.
Resumo:
This paper presents a visual SLAM method for temporary satellite dropout navigation, here applied on fixed- wing aircraft. It is designed for flight altitudes beyond typical stereo ranges, but within the range of distance measurement sensors. The proposed visual SLAM method consists of a common localization step with monocular camera resectioning, and a mapping step which incorporates radar altimeter data for absolute scale estimation. With that, there will be no scale drift of the map and the estimated flight path. The method does not require simplifications like known landmarks and it is thus suitable for unknown and nearly arbitrary terrain. The method is tested with sensor datasets from a manned Cessna 172 aircraft. With 5% absolute scale error from radar measurements causing approximately 2-6% accumulation error over the flown distance, stable positioning is achieved over several minutes of flight time. The main limitations are flight altitudes above the radar range of 750 m where the monocular method will suffer from scale drift, and, depending on the flight speed, flights below 50 m where image processing gets difficult with a downwards-looking camera due to the high optical flow rates and the low image overlap.