932 resultados para heart ejection fraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immediate and short-term chemosensory impacts of coffee and caffeine on cardiovascular activity. Introduction: Caffeine is detected by 5 of the 25 gustatory bitter taste receptors (hTAS2Rs) as well as by intestinal STC-1 cell lines. Thus there is a possibility that caffeine may elicit reflex autonomic responses via chemosensory stimulation. Methods: The cardiovascular impacts of double-espresso coffee, regular (130 mg caffeine) and decaffeinated, and encapsulated caffeine (134 mg) were compared with a placebocontrol capsule. Measures of four post-ingestion phases were extracted from a continuous recording of cardiovascular parameters and contrasted with pre-ingestion measures. Participants (12 women) were seated in all but the last phase when they were standing. Results: Both coffees increased heart rate immediately after ingestion by decreasing both the diastolic interval and ejection time. The increases in heart rate following the ingestion of regular coffee extended for 30 min. Encapsulated caffeine decreased arterial compliance and increased diastolic pressure when present in the gut and later in the standing posture. Discussion: These divergent findings indicate that during ingestion the caffeine in coffee can elicit autonomic arousal via the chemosensory stimulation of the gustatory receptors which extends for at least 30 min. In contrast, encapsulated caffeine can stimulate gastrointestinal receptors and elicit vascular responses involving digestion. Conclusion: Research findings on caffeine are not directly applicable to coffee and vice versa. The increase of heart rate resulting from coffee drinking is a plausible pharmacological explanation for the observation that coffee increases risk for coronary heart disease in the hour after ingestion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interest for environmental fate assessment of chiral pharmaceuticals is increasing and enantioselective analytical methods are mandatory. This study presents an enantioselective analytical method for the quantification of seven pairs of enantiomers of pharmaceuticals and a pair of a metabolite. The selected chiral pharmaceuticals belong to three different therapeutic classes, namely selective serotonin reuptake inhibitors (venlafaxine, fluoxetine and its metabolite norfluoxetine), beta-blockers (alprenolol, bisoprolol, metoprolol, propranolol) and a beta2-adrenergic agonist (salbutamol). The analytical method was based on solid phase extraction followed by liquid chromatography tandem mass spectrometry with a triple quadrupole analyser. Briefly, Oasis® MCX cartridges were used to preconcentrate 250 mL of water samples and the reconstituted extracts were analysed with a Chirobiotic™ V under reversed mode. The effluent of a laboratory-scale aerobic granular sludge sequencing batch reactor (AGS-SBR) was used to validate the method. Linearity (r2 > 0.99), selectivity and sensitivity were achieved in the range of 20–400 ng L−1 for all enantiomers, except for norfluoxetine enantiomers which range covered 30–400 ng L−1. The method detection limits were between 0.65 and 11.5 ng L−1 and the method quantification limits were between 1.98 and 19.7 ng L−1. The identity of all enantiomers was confirmed using two MS/MS transitions and its ion ratios, according to European Commission Decision 2002/657/EC. This method was successfully applied to evaluate effluents of wastewater treatment plants (WWTP) in Portugal. Venlafaxine and fluoxetine were quantified as non-racemic mixtures (enantiomeric fraction ≠ 0.5). The enantioselective validated method was able to monitor chiral pharmaceuticals in WWTP effluents and has potential to assess the enantioselective biodegradation in bioreactors. Further application in environmental matrices as surface and estuarine waters can be exploited.