935 resultados para hair sheep


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lectin detected in haemolymph from the Australian spiny lobster Panulirus cygnus agglutinated human ABO Group A cells to a higher titre than Group O or B. The lectin also agglutinated rat and sheep erythrocytes, with reactivity with rat erythrocytes strongly enhanced by treatment with the proteolytic enzyme papain, an observation consistent with reactivity via a glycolipid. The lectin, purified by affinity chromatography on fixed rat-erythrocyte stroma, was inhibited equally by N-acetylglucosamine and N-acetylgalactosamine. Comparison of data from gel filtration of haemolymph (behaving as a 1,800,000 Da macromolecule), and polyacrylamide gel electrophoresis of purified lectin (a single 67,000 Da band), suggested that in haemolymph the lecin was a multimer. The purified anti-A lectin autoprecipitated unless the storage solution contained chaotropic inhibitors (125 mmol/L sucrose: 500 mmol/L urea). The properties of this anti-A lectin and other similar lectins are consistent with a role in innate immunity in these invertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses human and post-human relationships with nature and animals, using the work e. Menura Superba1 as a focal point. This interactive artwork takes the form of a Lyre bird in a cage, that mimics it’s audience in evocative ways. It is inspired by the historical practice of displaying taxidermy specimens and live species as trophies of travels to distant lands, and as symbols of wealth and status. In both form and intent the work hybridises elements from Enlightenment culture, with materials that conjure associations with dystopic post human futures (wire, post consumer electronic & other waste, as well working parts such as mobile phone screens, LED’s, camera, and cabling etc). Speculative science fiction, such as Phillip K Dick in Do Androids Dream of Electric Sheep? (Blade Runner), provides prescient stories about future (post) human worlds. This novel remains thought provoking as it describes a world that is all to rapidly approaching: where human activity has caused the destruction of most large animal species. In this fictional world, care for animals is not only a civic duty, it is one of the ways humans distinguish themselves from androids. As in Enlightenment times, ownership of animals (real, taxidermies, ersatz) is a form of commodity fetishism indicative of social status. Though whilst well heeled Victorians may have owned an elephant or have been proud of a trophy specimen, the wealthy in Dick’s future must be content with once common, even ersatz, animals such as sheep and owls, and would be repulsed to the core by the notion of killing an animal, even an ersatz animal, for sport. In becoming post human, humans have sought to separate themselves from the natural world, destroying much of it in the process. No technical prothesis will bring back to life the species we have rendered extinct. This (evolving) relationship between humanity and other species, therefore forms a central question in this work, providing a way of approaching the post human, and problematising anthropocentric perspectives. The world promised by post-human technology is indeed rich with possibility, but without corresponding steps to ensure the sustainability of technology (human society), this paper asks whether the richness of that experience will continue to be mirrored by the richness of the environments within which we exist?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human Ureaplasma species are the most frequently isolated bacteria from the upper genital tract of pregnant women and can cause clinically asymptomatic, intra-uterine infections, which are difficult to treat with antimicrobials. Ureaplasma infection of the upper genital tract during pregnancy has been associated with numerous adverse outcomes including preterm birth, chorioamnionitis and neonatal respiratory diseases. The mechanisms by which ureaplasmas are able to chronically colonise the amniotic fluid and avoid eradication by (i) the host immune response and (ii) maternally-administered antimicrobials, remain virtually unexplored. To address this gap within the literature, this study investigated potential mechanisms by which ureaplasmas are able to cause chronic, intra-amniotic infections in an established ovine model. In this PhD program of research the effectiveness of standard, maternal erythromycin for the treatment of chronic, intra-amniotic ureaplasma infections was evaluated. At 55 days of gestation pregnant ewes received an intra-amniotic injection of either: a clinical Ureaplasma parvum serovar 3 isolate that was sensitive to macrolide antibiotics (n = 16); or 10B medium (n = 16). At 100 days of gestation, ewes were then randomised to receive either maternal erythromycin treatment (30 mg/kg/day for four days) or no treatment. Ureaplasmas were isolated from amniotic fluid, chorioamnion, umbilical cord and fetal lung specimens, which were collected at the time of preterm delivery of the fetus (125 days of gestation). Surprisingly, the numbers of ureaplasmas colonising the amniotic fluid and fetal tissues were not different between experimentally-infected animals that received erythromycin treatment or infected animals that did not receive treatment (p > 0.05), nor were there any differences in fetal inflammation and histological chorioamnionitis between these groups (p > 0.05). These data demonstrate the inability of maternal erythromycin to eradicate intra-uterine ureaplasma infections. Erythromycin was detected in the amniotic fluid of animals that received antimicrobial treatment (but not in those that did not receive treatment) by liquid chromatography-mass spectrometry; however, the concentrations were below therapeutic levels (<10 – 76 ng/mL). These findings indicate that the ineffectiveness of standard, maternal erythromycin treatment of intra-amniotic ureaplasma infections may be due to the poor placental transfer of this drug. Subsequently, the phenotypic and genotypic characteristics of ureaplasmas isolated from the amniotic fluid and chorioamnion of pregnant sheep after chronic, intra-amniotic infection and low-level exposure to erythromycin were investigated. At 55 days of gestation twelve pregnant ewes received an intra-amniotic injection of a clinical U. parvum serovar 3 isolate, which was sensitive to macrolide antibiotics. At 100 days of gestation, ewes received standard maternal erythromycin treatment (30 mg/kg/day for four days, n = 6) or saline (n = 6). Preterm fetuses were surgically delivered at 125 days of gestation and ureaplasmas were cultured from the amniotic fluid and the chorioamnion. The minimum inhibitory concentrations (MICs) of erythromycin, azithromycin and roxithromycin were determined for cultured ureaplasma isolates, and antimicrobial susceptibilities were different between ureaplasmas isolated from the amniotic fluid (MIC range = 0.08 – 1.0 mg/L) and chorioamnion (MIC range = 0.06 – 5.33 mg/L). However, the increased resistance to macrolide antibiotics observed in chorioamnion ureaplasma isolates occurred independently of exposure to erythromycin in vivo. Remarkably, domain V of the 23S ribosomal RNA gene (which is the target site of macrolide antimicrobials) of chorioamnion ureaplasmas demonstrated significant variability (125 polymorphisms out of 422 sequenced nucleotides, 29.6%) when compared to the amniotic fluid ureaplasma isolates and the inoculum strain. This sequence variability did not occur as a consequence of exposure to erythromycin, as the nucleotide substitutions were identical between chorioamnion ureaplasmas isolated from different animals, including those that did not receive erythromycin treatment. We propose that these mosaic-like 23S ribosomal RNA gene sequences may represent gene fragments transferred via horizontal gene transfer. The significant differences observed in (i) susceptibility to macrolide antimicrobials and (ii) 23S ribosomal RNA sequences of ureaplasmas isolated from the amniotic fluid and chorioamnion suggests that the anatomical site from which they were isolated may exert selective pressures that alter the socio-microbiological structure of the bacterial population, by selecting for genetic changes and altered antimicrobial susceptibility profiles. The final experiment for this PhD examined antigenic size variation of the multiple banded antigen (MBA, a surface-exposed lipoprotein and predicted ureaplasmal virulence factor) in chronic, intra-amniotic ureaplasma infections. Previously defined ‘virulent-derived’ and ‘avirulent-derived’ clonal U. parvum serovar 6 isolates (each expressing a single MBA protein) were injected into the amniotic fluid of pregnant ewes (n = 20) at 55 days of gestation, and amniotic fluid was collected by amniocentesis every two weeks until the time of near-term delivery of the fetus (at 140 days of gestation). Both the avirulent and virulent clonal ureaplasma strains generated MBA size variants (ranging in size from 32 – 170 kDa) within the amniotic fluid of pregnant ewes. The mean number of MBA size variants produced within the amniotic fluid was not different between the virulent (mean = 4.2 MBA variants) and avirulent (mean = 4.6 MBA variants) ureaplasma strains (p = 0.87). Intra-amniotic infection with the virulent strain was significantly associated with the presence of meconium-stained amniotic fluid (p = 0.01), which is an indicator of fetal distress in utero. However, the severity of histological chorioamnionitis was not different between the avirulent and virulent groups. We demonstrated that ureaplasmas were able to persist within the amniotic fluid of pregnant sheep for 85 days, despite the host mounting an innate and adaptive immune response. Pro-inflammatory cytokines (interleukin (IL)-1â, IL-6 and IL-8) were elevated within the chorioamnion tissue of pregnant sheep from both the avirulent and virulent treatment groups, and this was significantly associated with the production of anti-ureaplasma IgG antibodies within maternal sera (p < 0.05). These findings suggested that the inability of the host immune response to eradicate ureaplasmas from the amniotic cavity may be due to continual size variation of MBA surface-exposed epitopes. Taken together, these data confirm that ureaplasmas are able to cause long-term in utero infections in a sheep model, despite standard antimicrobial treatment and the development of a host immune response. The overall findings of this PhD project suggest that ureaplasmas are able to cause chronic, intra-amniotic infections due to (i) the limited placental transfer of erythromycin, which prevents the accumulation of therapeutic concentrations within the amniotic fluid; (ii) the ability of ureaplasmas to undergo rapid selection and genetic variation in vivo, resulting in ureaplasma isolates with variable MICs to macrolide antimicrobials colonising the amniotic fluid and chorioamnion; and (iii) antigenic size variation of the MBA, which may prevent eradication of ureaplasmas by the host immune response and account for differences in neonatal outcomes. The outcomes of this program of study have improved our understanding of the biology and pathogenesis of this highly adapted microorganism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a commercial environment, it is advantageous to know how long it takes customers to move between different regions, how long they spend in each region, and where they are likely to go as they move from one location to another. Presently, these measures can only be determined manually, or through the use of hardware tags (i.e. RFID). Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. They include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. While these traits cannot provide robust authentication, they can be used to provide identification at long range, and aid in object tracking and detection in disjoint camera networks. In this chapter we propose using colour, height and luggage soft biometrics to determine operational statistics relating to how people move through a space. A novel average soft biometric is used to locate people who look distinct, and these people are then detected at various locations within a disjoint camera network to gradually obtain operational statistics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.